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Abstract—Accurate reconstruction of static and rapidly moving
targets demands three-dimensional imaging solutions with high
temporal and spatial resolution. Radar sensors are a promising
sensing modality because of their fast capture rates and their
independence from lighting conditions. To achieve high spatial
resolution, MIMO radars with large apertures are required.
Yet, they are infrequently used for dynamic scenarios due to
significant limitations in signal processing algorithms. These
limitations impose substantial hardware constraints due to their
computational intensity and reliance on large signal bandwidths,
ultimately restricting the sensor’s capture rate. One solution of
previous work is to use few frequencies only, which enables
faster capture and requires less computation; however, this
requires coarse knowledge of the target’s position and works
in a limited depth range only. To address these challenges, we
extend previous work into the multimodal domain with MM-
2FSK, which leverages an assistive optical depth sensing modality
to obtain a depth prior, enabling high framerate capture with
only few frequencies. We evaluate our method using various
target objects with known ground truth geometry that is spatially
registered to real millimeter-wave MIMO radar measurements.
Our method demonstrates superior performance in terms of
depth quality, being able to compete with the time- and resource-
intensive measurements with many frequencies.

Index Terms—3D reconstruction, depth cameras, frequency
shift keying, mimo radar, multimodal, radar imaging, sensor
fusion

I. INTRODUCTION

In recent years, the reconstruction of dynamic targets

using contactless sensors has gained significant attention,

influencing research in many areas, including entertainment

(e.g., computer games, AR/VR), autonomous agents, human-

computer interaction, and medical diagnosis [1], [2].

Among these, applications involving critical decisions based

on complex movements, such as human gait analysis [3],

[4] and clinical hand function assessments [5]–[7], place a

particularly high demand on fast and precise sensing techniques

to ensure the reliability of such decisions.

*The authors contributed equally to this work
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Millimeter-wave (mmWave) multiple-input multiple-output

(MIMO) radars offer a viable solution, providing spatial

resolution beyond the capabilities of traditional monostatic

antenna systems, and enabling the distinction of static and

dynamic targets. Moreover, radar systems can analyze mo-

tion via the Doppler effect, making them well-suited for

dynamic environments, compared to other modalities such

as conventional LiDAR or RGB-D cameras. Thus, MmWave

MIMO radar systems have been utilized for 3D human body

reconstruction [8], [9], pose estimation [10], [11], people

tracking [12], and activity recognition [13].

To achieve high-resolution three-dimensional imaging, for

instance in security screening [14], MIMO radars typically

employ a large number of transmitting (TX) and receiving

(RX) antennas. Traditional radar imaging techniques, such as

backprojection [14], [15], rely on these dense antenna arrays

to leverage the numerous TX-RX combinations for precise

reconstruction; however, this comes at the expense of significant

computational resources. Such methods also often require many

distinct transmission frequencies, which limits the sensor’s

capture rate and renders the algorithm unsuitable for rapidly

moving targets.

An alternative research direction is to improve resolution

capabilities with sparse, low-cost antenna arrays that can

operate at high capture rates. Recent advancements in deep

learning focus on smooth neural target representations that

surpass the spatial resolution limitations of conventional signal

processing techniques. One approach is to employ generative

methods, such as implicit neural representations [16] or

conditional generative adversarial networks [17], to recover

the spatially resolved reflective properties of targets at super-

resolution. Another line of work uses Neural Radiance Fields

(NeRFs) as compact geometric representations to simulate novel

views and synthesize raw frequency-space measurements [18]

or range-Doppler maps [19], while also incorporating additional

modalities such as LiDAR and cameras [20]. Due to their data-

driven learning processes, these approaches typically require a

substantially high number of radar measurements, which cur-

rently limits their application primarily to autonomous driving
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scenarios. Moreover, the training process is computationally

intensive.

Among traditional approaches, Bräunig et al. [21] introduced

an imaging technique for large, densely-packed antenna arrays

of high-resolution MIMO radars, which focuses on high-speed

pose tracking of both static and dynamic human hands. The

proposed 2FSK method operates using just two neighboring

frequencies, based on the principle of continuous-wave (CW)

Frequency Shift Keying (FSK). This approach significantly

speeds up the reconstruction process, making it up to 1000

times faster than backprojection [21], while ensuring rapid

capture times due to the limited set of transmitted frequencies.

A key limitation of the 2FSK method, however, is its assump-

tion that the depth of the captured object is roughly known.

Follow-up work [22] (3FSK) aims to improve robustness by

requiring more complex hardware configurations, that is, a

larger signal bandwidth and three representative frequencies

with specific frequency displacements, allowing for a less

accurate depth prior.

The initial scalar depth prior, resembling a plane or depth

slice in 3D space, makes both methods suitable primarily for

flat targets with limited depth extent, as shown for hands in [21],

[22]. Consequently, their applicability is restricted to a narrow

range of target geometries and can lead to inaccuracies in

uncertain environments.

Our work extends the 2FSK technique into the multimodal

domain, aiming towards a broadly applicable method that

offers reliable fast-capture and fast-reconstruction performance

with respect to unknown static and dynamic environments. We

integrate a secondary depth sensing modality, such as an optical

RGB-D camera, to obtain a depth prior. Optical depth sensors

offer higher spatial resolution compared to existing imaging

radars. However, their temporal resolution is significantly lower.

The such obtained depth prior allows our method to handle

objects with varying geometries in the depth direction. We

refer to this approach as multimodal 2FSK (MM-2FSK).

We provide a comprehensive evaluation based on a

dataset [23] that provides ground-truth geometry of static

objects, spatially aligned with real-world measurements from a

mmWave high-resolution MIMO imaging radar with frequency-

stepped continuous-wave (FSCW) signal modulation. In this

evaluation, we compare our method with 2FSK, 3FSK, and

traditional backprojection. In addition, we investigate the

influence of signal bandwidth beyond theoretical analysis

and provide ablation studies focused on different frequency

configurations.

In summary, our contributions are the following:

1) A novel multimodal signal processing method that

incorporates a mmWave FSCW MIMO radar along with

an optical depth camera as an assistive modality; for

evaluation, we use an active stereo RGB-D camera.

2) A method for robust, high-speed radar imaging of

arbitrary objects without requiring additional knowledge

about the capture environment, i.e. the object position

and depth variation over surface.

3) A comprehensive evaluation of various static objects: An

ablation study over different frequency configurations

and comparison to state-of-the-art radar imaging methods,

i.e. 2FSK, 3FSK, and backprojection.

II. FREQUENCY SHIFT KEYING FOR MIMO RADAR

IMAGING

In the following section, we first address the theoretical

foundations of the 2FSK imaging principle of Bräunig et

al. [21]. Subsequently, we derive our MM-2FSK method from

this principle. The key differences between the two algorithms

are highlighted in Figure 1.

Both methods are designed for high-resolution MIMO

imaging radars that utilize multiple transmit-receive (TX-RX)

antenna pairs for imaging. For simplicity, we omit the repetitive

calculations over multiple antenna pairs – typically performed

for backprojection and related imaging methods – and present

exemplary equations using just one TX-RX antenna pair. For

a more detailed derivation of the equations, we refer to [21].

A. Frequency Shift Keying with Two Neighboring Frequencies

(2FSK)

The 2FSK approach uses two transmitted signals of discrete

neighboring frequencies, 51 and 52. In a MIMO antenna con-

figuration, the corresponding baseband signals are transmitted

from a TX antenna, rTX ∈ R
3, reflect off the first point target

located at p ∈ R3, and are subsequently received by each RX

antenna, rRX ∈ R
3. After signal demodulation, the baseband

signals, B8 with 8 ∈ {1, 2}, can be expressed in analytic notation

as follows:

B8 = �8exp
(
− 92c 58

d

c
+ q2

)
, (1)

where �8 is the amplitude, c is the speed of light, and q2 is a

constant phase offset. The traveled round-trip distance to p,

defined as d = ∥rTX − p∥2 + ∥rRX − p∥2, relates to the target

depth 3 by d = 23, assuming far-field conditions where depth

approximates range.

Given a set of candidate point target locations

p̃ ∈ P = {(G, H, 3̃)} with a corresponding scalar depth

prior 3̃, two signal hypotheses, F1, F2, are computed from the

round-trip distance d̃ between an TX-RX antenna pair and p̃:

F8 ( d̃) = exp

(
− 92c 58

d̃

c

)
. (2)

The hypotheses are correlated with the baseband signals as

follows:

28 ( d̃) = B8F8 ( d̃)∗ = exp

(
− 92c 58

(d − d̃)

c

)
, (3)

where ∗ denotes the complex conjugate. The resulting complex

signal contains a residual phase Δi8 that is proportional to

a correction factor for distance, Δd = (d − d̂) = 2Δ3, and

correspondingly depth Δ3:

2c 58
Δd

c
= 2c 58

2Δ3

c
= Δi8 (4)

⇔ Δ3 =
cΔi8

4c 58
, (5)
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Fig. 1. In our work, we extend the 2FSK imaging principle to the multimodal domain (MM-2FSK). Given a unified scalar depth prior, 3̃, for each point, the
2FSK method iteratively refines the current estimate with a per-point depth correction factor, Δ3, up to a limited extent, given by the maximum unambiguous
depth correction, 3max. In contrast, our method receives per-point depth priors from a secondary depth sensor, without requiring knowledge about the target
position, and is more robust towards targets of varying surface depth.

With this information, each per-point depth estimate 3 can be

refined as follows:

3 = 3̃ + Δ3 . (6)

Computing the phase Δi1 or Δi2 involves inverse trigono-

metric functions to determine the angle of the residual complex

phasor 28 ( d̃). Due to the 2c phase ambiguities arising from

its repetitive nature, these angles are typically restricted to the

first period of the residual phasor. Consequently, the maximum

correction factor for depth in one direction can be derived

from Equation 5 by assuming Δi8 approaches 2c, which yields

c/(2 · 58).

High-resolution MIMO imaging radars typically operate in

the GHz to THz range [14], meaning this maximum correction

factor can be quite small. Thus, Bräunig et al. [21] introduced

the concept of calculating a differential complex phasor from

the two single-frequency residual phasors based on Equation 3

and Equation 4 as follows:

2Δ 5 ( d̃) = 22 ( d̃)21 ( d̃)∗ = exp

(
− 92cΔ 5

2Δ3

c

)
. (7)

The complex phasor of frequency difference Δ 5 = 52 − 51
resembles a signal of considerably lower frequency (cf. Fig-

ure 2), allowing a depth correction Δ3 to be within the so-called

maximum unambiguous depth correction Δ3max, which now

solely dependends on the signal bandwidth:

Δ3 =
cΔiΔ 5

4cΔ 5
⇒ Δ3max =

c

2 · 2Δ 5
. (8)

It is noteworthy that the right side corresponds to Equa-

tion 8 from [21], additionally divided by a factor of 2 since

we consider depth correction in both directions, yielding

Δ3 ∈ [−Δ3max,+Δ3max].

We illustrate the intuition behind the depth correction in

Figure 2, where we simplify the illustration of an analytic

Fig. 2. Simplified visualization of the 2FSK depth correction process, where
complex, analytic signals are schemed as periodic, real-valued sine waves. The
2FSK principle computes the depth correction Δ3 based on the residual of the
phase, Δi, that remains after correlating the two single-frequency signals with

a signal hypothesis, constructed with the depth prior 3̃. The top row depicts
the two residual signals at frequencies 51 and 52, respectively. Using these, a
complex differential signal with frequency Δ 5 is calculated, as depicted in
the bottom row. This differential signal is used to adjust the current depth
guess and is constrained by the maximum unambiguous depth correction,
±3max. The correction factor is centered around the zero-crossing of the signal
within the first period – or here, half of the period, due to signal simplification –
pointing into the direction where the residual phase yields zero. Due to the
2c-periodicity of the continuous signal, the residual phase corresponding to
the ground truth depth, 3max may lie within a different signal period, resulting
in the depth correction not producing the intended outcome.

complex signal to a simple sine wave. As the depth correction

is limited to the first period of the residual phasor 2Δ 5 , the

2FSK algorithm does not necessarily converge to the ground-

truth depth 3max of each point target, which may lie outside

this period. Consequently, depth correction can fail and may



even inadvertently adjust prior depth estimates in the wrong

direction. To address this challenge, we introduce the MM-

2FSK method next.

B. Multimodal Frequency Shift Keying (MM-2FSK)

As our method is tailored to high-speed radar imaging, we

first describe theoretical details of our algorithm, followed by

its efficient implementation on the graphics card.

1) Algorithm: In contrast to the 2FSK approach, which

relies on a single scalar depth prior, we propose utilizing per-

pixel depth measurements obtained from a depth camera that

is spatially calibrated with a MIMO imaging radar.

This spatial calibration can be achieved, for example,

using target-based methods, such as in [24], where spherical

calibration targets composed of metallic and styrofoam-based

materials are combined and symmetrically mounted on a board,

to calibrate near-field MIMO imaging radars in conjunction

with optical depth sensors.

By employing this secondary sensor, we first acquire an

optical depth map J> ∈ R
�×, , with pixels (D, E) and

corresponding depth 3. We then compute the associated point

cloud p> ∈ V> ∈ R
#×3 by back-projecting each triplet

(D, E, 3) utilizing the intrinsic calibration parameters of the

depth camera:

p> =
©­«

5D 0 2D
0 5E 2E
0 0 1

ª®¬
−1 ©­«

D · 3

E · 3

3

ª®¬
, (9)

where 5D, 5E are the focal lengths and 2D, 2E are the principal

point offsets of the depth camera model. Note that the depth

image may contain invalid pixels due to the sensitivity of

optical depth sensors to environmental lighting and reflective

materials; such pixels are simply skipped.

To generate a depth prior for radar imaging, the resulting

point cloud is converted to a closed triangle mesh. To this

end, we triangulate the point cloud (in 2D) using Delaunay

triangulation [25]. This triangulation computes the 2D convex

hull of V>, effectively filling in depth gaps and preventing

surface holes. A visualization of such triangulation is given

in Figure 3. Next, we use the extrinsic parameters obtained

from spatial calibration [24] to transform the triangulated point

cloud into the radar’s coordinate space:

VA
> = [X | t]V> . (10)

The extrinsic parameters consist of a rotation X ∈ R3×3 and

translation t ∈ R3.

We then construct the set of candidate point target locations

P. Since the final output of high-resolution MIMO radars is

typically an image, we compute P by sampling a user-defined

�′ ×, ′ pixel grid of cartesian 2D coordinates (G, H), centered

around the antenna aperture. Given the mapping of spatial

coordinates to radar image pixels – typically represented as an

orthographic camera model – we rasterize the triangulated point

cloud VA
>.

Specifically, we render a depth map with barycentrically

interpolated depth values, based on the triangle topology, to

Surface

Delaunay

Triangulation

Surface

Valid depth samples
Missing depth samples

Coord. space

Transformation

Pixel grid
Pixel grid

Fig. 3. Visualization of the depth prior generation: We first create a closed
triangle mesh using Delaunay triangulation on 2D pixels corresponding to
valid 3D point samples from the optical depth sensor; illustrated here in 2D
as blue line sets. The mesh is then transformed into the radar’s coordinate
space and re-sampled via rasterization on the radar pixel grid to generate the
candidate point set P.

yield P ∈ R
�′, ′×3. This essentially becomes our set of

point candidates with per-point depth prior 3̃, as illustrated

in Figure 3. Finally, we proceed with the depth correction in

analogy to Equation 6 of the 2FSK method.

Note that in contrast to 2FSK and 3FSK our depth prior is

not constant and can thus represent non-flat shapes with larger

depth range. As long as the noise parameters of the optical

depth camera and any spatial calibration errors remain within

the maximum unambiguous depth correction factor, the final

depth estimates of the MM-2FSK method are expected to be

close to the ground truth.

Algorithm 1: (MM-)2FSK for one CUDA thread

Input: Thread ID 8 ∈ [0, 31], warp ID 9 ∈ N0,

baseband signals Y1, Y2 ∈ C
)×', point

candidates P ∈ R�′, ′×3, antenna positions

XTX ∈ R
)×3 and XRX ∈ R

'×3

Data: Shared memory buffer JrTX
∈ R) , JrRX

∈ R'

Output: Correlations I1 ∈ C
�′, ′ , I2 ∈ C

�′, ′

p ← P[ 9];

for : ← 0, )/32 do

JrTX
[8 + 32 · :] ← ∥XTX [8 + 32 · :] − p∥2;

end

for : ← 0, '/32 do

JrRX
[8 + 32 · :] ← ∥ p − XRX [8 + 32 · :] ∥2;

end

2̄1, 2̄2 ← 0;

for : ← 0, () · ')/32 do

d̃ ← JrTX
[8 + 32 · :] + JrRX

[8 + 32 · :];

2̄1 ← 2̄1 + 21 ( d̃); // Equation 3 for 51

2̄2 ← 2̄2 + 22 ( d̃); // Equation 3 for 52

end

I1 [ 9] ← warp reduce sum(2̄1)/() · ');

I2 [ 9] ← warp reduce sum(2̄2)/() · ');

2) Efficient Implementation: Our method utilizes the single-

instruction multiple-threads (SIMT) instructions of graphics

processing units (GPUs), implemented by using NVIDIA



CUDA as domain specific language. In this section, we put

emphasis on the CUDA implementation of the baseband signal

correlation kernel, which is commonly the runtime bottleneck

in reconstruction using high-resolution imaging radars.

In MIMO radar imaging algorithms [14], [21], determining

the spatial position of a point target typically requires perform-

ing correlation across the entire antenna aperture configuration.

Specifically, for each candidate point target p ∈ P, the residual

phasors from Equation 3 are averaged over multiple TX-RX

antenna positions. To optimize performance on the GPU, we

parallelize the iterations over point targets and antenna pairs,

utilizing the shared memory features of the GPU architecture.

NVIDIA graphics cards consist of SIMT units called warps,

which include 32 parallel threads grouped into blocks that

share fast-access memory. In our GPU kernel, as shown

in Algorithm 1, each point p is processed by an entire warp,

distributing the computations over multiple TX-RX antenna

pairs. Given the known )×' MIMO antenna architecture, each

thread pre-computes a subset of one-directional antenna paths

from any TX antenna to p and from p to any RX antenna,

stored in JrTX
and JrRX

.

By sharing memory within the warp, each thread com-

putes a partial summation of the residual phasors over all

possible () · ')/32 TX-RX combinations. Finally, we utilize

CUDA warp functions for summing the residual phasors in

warp_reduce_sum and then average the result. The depth

correction step, calculated from Equation 7, is then performed

after the kernel, as we use the two intermediate residual phasor

sets, I1 and I2, for additional depth filtering, as discussed in

the next section.

III. EXPERIMENTAL SETUP

In the following sections, we describe the measurement

setup derived from the MAROON dataset [23], along with

the implementation details of the algorithms that we use

in our evaluation: backprojection [14], [15], 2FSK [21],

3FSK [22], and MM-2FSK. Similar to ours, the 3FSK method

extends the 2FSK approach by utilizing three representative

frequencies with specific frequency displacements, resulting in

three frequency differences. This allows for depth correction

to be performed twice: first, by using the initial scalar depth

value with a low frequency difference and, second, by utilizing

the per-point corrected depth prior with two high frequency

differences.

A. Dataset

We validate the proposed method using the MAROON

dataset [23], which comprises real sensor measurements of 45

distinct static household and construction objects of varying

surface geometry. These measurements were collected from

a high-resolution MIMO radar, which was synchronized with

three different spatially calibrated depth cameras and a ground-

truth measurement system. While the target objects were

captured at various distances [23], we focus on the object

measurements taken at approximately 30 cm from the MIMO

radar.

The QAR50 MIMO radar submodule utilized in MAROON

features an aperture consisting of 94×94 TX-RX antenna pairs

and employs a frequency-stepped continuous-wave (FSCW)

signal modulation, operating across 128 discrete frequencies

from 72 to 82 GHz. To assess the imaging accuracy of the

proposed method, we utilize ground-truth measurements of

the target objects, obtained from a multi-view stereo system

composed of five digital single-lens reflex (DSLR) cameras.

Depending on the experiment, we chose either the ground-truth

system or the Realsense D435i active stereo depth camera as

secondary modalities for our MM-2FSK approach.

B. Implementation Details

For the MIMO imaging radar, the dataset provides raw phasor

data in the form of a 94 × 94 × 128 complex tensor, which we

reduce to include only the two or three relevant frequencies,

resulting in a 94 × 94 × 2 or 94 × 94 × 3 tensor, respectively,

depending on the radar imaging method.

For backprojection, we sample points within a

30 × 30 × 20 cm volume centered around the object,

yielding a voxel grid of dimensions 301× 301× 201. This grid

is then projected to a 301 × 301 = �′ ×, ′ depth map using

maximum intensity projection. For the 2FSK, 3FSK, and

MM-2FSK methods, we correspondingly reconstruct the depth

map directly. To investigate realistic scenarios, where the

object placement is not trivial to assess, we use a 2FSK/3FSK

depth prior of 3̃ = 40 cm, which means, we expect a depth

correction factor of Δ3 ≈ 10 cm based on the ground truth at

approximately 30 cm depth.

To filter out clutter and noise, we employ a depth filtering

threshold across all four imaging methods, applied to the

magnitude of the residual complex phasor after spatially

resolving the signal. Specifically, we use the CUDA kernel

listed in Algorithm 1 to average the residual phasors across

all TX-RX antenna and frequency combinations, then compute

the magnitude of the resulting mean phasor. Finally, we keep

the depth values with a magnitude higher than -14 dB relative

to the maximum.

In terms of runtime, our implementation for depth estima-

tion with two-frequency backprojection takes approximately

1430 ms, when using an NVIDIA GeForce RTX 3080 graphics

card (10GB VRAM) and an Intel Xeon W-1390P (3.50 GHz)

processor. 3FSK achieves a runtime of about 7 ms and the

(MM-)2FSK methods achieve a runtime of about 4 ms.

IV. EVALUATION

In the following sections, we will describe the evaluation met-

rics and experimental results. We present two key experiments:

first, we conduct an ablation study to explore the accuracy of

MM-2FSK while varying the frequency differences. Second,

we compare our method against the 2FSK [21] and 3FSK [22]

approaches, and traditional backprojection (BP) [14], [15].

Our evaluation consists of six representative frequency

configurations, which are listed in Table I. For (MM-)2FSK

and BP, we will use the terminology 2FSKΔ 5 , e.g., FSKΔ0.5 to

denote a configuration with 0.5 GHz frequency difference. For



TABLE I
FREQUENCY CONFIGURATIONS, UTILIZED FOR ALL SUBSEQUENT

EXPERIMENTS.

Δ 5 (GHz) 51 (GHz) 52 (GHz) Δ3max (cm)

≈ 0.5 81.45 82.00 13.60
≈ 1.0 80.98 82.00 7.32
≈ 2.0 79.95 82.00 3.66
≈ 4.0 77.91 82.00 1.83
≈ 8.0 73.97 82.00 0.93
≈ 10.0 72.00 82.00 0.75

3FSK, we denote the lowest and highest frequency differences

as 3FSK(Δ 5min, Δ 5max).

A. Metrics

We follow a similar evaluation procedure as outlined in

the MAROON dataset, utilizing the corresponding metrics:

the one-directional Chamfer distance and the projective error.

Interested readers are referred to [23] for a detailed discussion

on the interpretation of these metrics.

The one-directional Chamfer distance quantifies the mean

point-wise euclidean norm between point cloud VA ∈ R
#×3,

and point cloud Vgt ∈ R
"×3:

C =
1

#

∑
p
A
∈VA

min
pgt∈Vgt

∥ pA − pgt∥2 . (11)

To compute this, we transform the radar depth maps back into

point cloud representation, where we compare them against

the re-sampled ground-truth object reconstruction of similar

point density (cf. [23]). The Chamfer distance is measured in

both directions: from the ground-truth point cloud to the radar

reconstruction, denoted as Cg, and vice versa, denoted as Cs.

The projective error is calculated on the respective depth

maps, JA and Jgt, with the ground-truth depth map obtained

by rasterizing the point cloud with respect to the radar pixel

grid:

P =
1

�′ ·, ′

�′−1∑
D=0

, ′−1∑
E=0

|JA (D, E) − Jgt (D, E) | . (12)

Following the methodology of [23], we measure the projective

error on the masked object depth maps, once with and without

performing additional mask erosion to mitigate silhouette arti-

facts; we denote the resulting metrics as P and Pe, respectively.

B. Ablation with respect to Frequency Differences

We assess the MM-2FSK algorithm using the frequency

configurations outlined in Table I to simulate different radar

systems.

To isolate the impact of the frequency configuration from

sensor characteristics, we utilize per-point depth priors obtained

from the ground-truth measurement system. The results are

summarized in Table II, showcasing performance across all

four metrics, averaged over the 45 objects of the dataset.

We observe a trend towards better performance at higher

frequency differences, with the MM-2FSKΔ10.0 method

TABLE II
ABLATION STUDY OF THE MM-2FSK METHOD WITH DIFFERENT

FREQUENCY CONFIGURATIONS. ALL METRICS ARE GIVEN IN CENTIMETERS

AND ARE AVERAGED OVER ALL OBJECTS AT 30 CM DISTANCE. THE BEST

RESULTS PER METRIC ARE HIGHLIGHTED.

Cg Cs P Pe

MM-2FSKΔ0.5 0.72 2.14 2.15 1.69
MM-2FSKΔ1.0 0.74 1.26 1.74 1.44
MM-2FSKΔ2.0 0.57 0.60 0.77 0.70
MM-2FSKΔ4.0 0.53 0.35 0.41 0.37
MM-2FSKΔ8.0 0.54 0.22 0.24 0.21
MM-2FSKΔ10.0 0.51 0.18 0.19 0.17

achieving the best results, yielding reconstruction errors in

millimeter range, with a maximum pixel-wise depth error

of only 1.9 mm with respect to P. We suggest this trend

is related to the maximum unambiguous depth correction (cf.

Table I), which decreases as frequency difference increases,

thereby constraining the radar depth variance. Specifically, the

maximum unambiguous depth correction is inversely propor-

tional to the phase sensitivity [22], which means that larger

frequency differences are less sensitive to phase variations

due to clutter and noise. This phenomenon becomes more

evident when visualizing the corresponding point clouds of the

reconstructions, as shown in Figure 4. Reconstructions with

higher frequency differences exhibit fewer noise artifacts.

MM-2FSK   0.5 MM-2FSK   1.0 MM-2FSK   4.0 MM-2FSK   10.0

Fig. 4. MM-2FSK reconstructions for the Cardboard and Wood Ball objects,
compared across different frequency configurations. The point clouds are
color-coded based on the residual phasor magnitude, which approximately
corresponds to the intensity of the signal. Higher bandwidths exhibit fewer
artifacts as they are less sensible to noisy phase variations.

C. Comparison with the State of the Art

We compare the performance of MM-2FSK against 2FSK,

3FSK and BP, using per-point depth priors obtained from the

active stereo depth camera. Our evaluation focuses on three

frequency configurations from Table I: the first, where 3̃ lies

within the maximum unambiguous depth correction (Δ 5 = 0.5),

the second, where it narrowly exceeds this factor (Δ 5 = 1.0),

and finally, the configuration where MM-2FSK performed best

in previous ablation (Δ 5 = 10.0). Additionally, we present

reference radar reconstructions derived from the significantly

more resource-intensive backprojection BPmax, utilizing the

maximum of 128 frequency steps.
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Fig. 5. Comparison of the reconstructed point clouds for backprojection, 2FSK, 3FSK, and MM-2FSK across different frequency configurations and views, with
standard BP using the full 10 GHz frequency spectrum at 128 frequency steps. The radar point clouds are color-coded based on the residual phasor magnitude,
approximately corresponding to the intensity of the signal. Side and top views overlay the reconstructed point cloud with the ground-truth point cloud for the
Bottle object at 30 cm object-to-sensor distance. The MM-2FSK method exhibits fewer artifacts and is closer to the ground truth than backprojection and
2FSK at the same frequency configuration. Additionally, depending on the frequency difference, MM-2FSK performs as well as or better than 3FSK, which
employs a greater number of frequencies.

In Figure 5, we present exemplary reconstructions of the

Bottle object generated by backprojection, 2FSK, 3FSK, and

MM-2FSK. Among these methods with the same frequency

configuration, MM-2FSK is the closest to the ground truth: at

Δ 5 = 10.0 GHz (rightmost column), it avoids reconstructing

the partially transmissive plastic, resulting in a closer match

to the ground-truth reconstruction than BPmax.

The qualitative observations align with the quantitative

evaluations in Table III, which detail the reconstruction

errors in centimeters across all objects; here, MM-2FSKΔ10.0

outperforms all approaches of similar number of frequencies

across three metrics. Additionally, its performance in pixel-wise

depth estimation, measured by metrics P and Pe, approaches

that of BPmax, with only +4.2 mm and +1.6 mm additional

error relative to the ground truth, respectively, despite utilizing

significantly fewer frequencies.

In terms of different frequency configurations, our method

proves to be more robust than other approaches, either matching

or exceeding their performance. In contrast, both 2FSK and

3FSK show significantly poorer results when the depth prior

falls outside the maximum unambiguous depth correction range,

particularly when Δ 5 > 0.5 GHz.

V. DISCUSSION

Our experiments demonstrate that the proposed MM-2FSK al-

gorithm outperforms comparable radar-only algorithms. While

integrating a complementary depth sensor yields superior

results, it also renders the algorithm prone to its limitations,

for example in scenarios with unsuitable lighting conditions or

highly reflective materials. Although our triangulation method

may still provide reasonable depth values to fill in the missing

TABLE III
THE MEAN RECONSTRUCTION ERROR IN CENTIMETERS, EVALUATED FOR

BACKPROJECTION, 2FSK AND, MM-2FSK AGAINST THE GROUND-TRUTH

SETUP. EACH METRIC IS AVERAGED ACROSS ALL MAROON OBJECTS AT A

SENSOR DISTANCE OF 30 CM. THE BEST RESULTS PER METRIC AMONG ALL

HIGH-SPEED IMAGING METHODS ARE HIGHLIGHTED.

Cg Cs P Pe

BPmax 0.82 0.90 0.94 0.85

BPΔ0.5 0.69 4.27 3.34 3.18
BPΔ1.0 0.79 5.29 3.70 3.40

BPΔ10.0 1.02 6.35 4.98 4.87

2FSKΔ0.5 0.90 2.36 2.55 2.10
2FSKΔ1.0 8.68 12.27 12.87 12.82
2FSKΔ10.0 9.80 9.69 10.38 10.38

3FSK(Δ0.5,Δ10.0) 0.83 2.54 2.63 2.30
3FSK(Δ1.0,Δ10.0) 8.37 12.47 12.88 12.87
3FSK(Δ2.0,Δ10.0) 6.43 7.90 8.51 8.52

MM-2FSKΔ0.5 0.95 2.95 3.13 2.39
MM-2FSKΔ1.0 0.98 2.72 2.84 2.28

MM-2FSKΔ10.0 0.82 1.74 1.36 1.01

depth priors, an alternative approach could involve fusing

the 3FSK method with our work, provided that the radar

sensor supports high bandwidth and signal modulation at non-

equidistant frequency steps.

Furthermore, the triangulation method does not respect object

boundaries, such that in complex scenarios with multiple

surface targets, depth interpolation using triangle topology

may yield insufficient depth priors. An interesting future task

could be the incorporation of semantic knowledge about the

environment, as achieved by object segmentation based on



color data for example – as most depth cameras provide color

information alongside depth.

Moreover, we recognize that sensor fusion with an optical

depth camera limits radar-specific characteristics, such as

signal transmission, which is desirable in applications like

security scanning or medical imaging. An intriguing research

direction would be to investigate sensor solutions with similar

transmission properties, like time-of-flight cameras operating

in the infrared frequency spectrum. Ultimately, it is essential

to carefully evaluate the trade-off between the desirable

characteristics of the radar sensor and the constraints imposed

by the supporting depth sensor for each application individually.

VI. CONCLUSION

In this work, we address the increasing demand for radar

sensors capable of high-speed capture and reconstruction to

enable fast and accurate depth sensing of both static and

dynamic targets by presenting a novel multimodal signal

processing method based on frequency shift keying principles

for MIMO radar imaging [21].

Leveraging the capabilities of an assistive optical depth

camera, our proposed MM-2FSK algorithm overcomes current

limitations of the 2FSK [21] approach with respect to the

maximum unambiguous depth correction factor. By employing

geometric processing methods such as triangulation, we utilize

the captured optical depth maps to create a per-point depth prior

from the perspective of the radar sensor, thereby addressing

potential shortcomings of the depth sensor through a hole-

filling method. This simple yet effective approach allows us to

generalize our MM-2FSK extension to capture environments

where neither the object’s position nor its geometry is known

in advance.

Evaluating our method with the diverse set of objects in the

MAROON dataset [23], we conducted experiments using a

high-resolution MIMO imaging radar in conjunction with an

active stereo depth camera. Our results demonstrate that our

multimodal imaging approach outperforms comparable related

work in terms of depth quality and performs only marginally

worse than backprojection with maximum frequency steps,

despite using fewer frequencies, therefore significantly lowering

the capture and computation time. In summary, we believe

our method holds great potential for future applications in

multi-sensor target tracking.
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[23] V. Wirth, J. Bräunig, M. Vossiek, T. Weyrich, and M. Stamminger,
“Maroon: A framework for the joint characterization of near-field high-
resolution radar and optical depth imaging techniques,” 2024.
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pp. 793–800, 1934.


	Introduction
	Frequency Shift Keying for MIMO Radar Imaging
	Frequency Shift Keying with Two Neighboring Frequencies (2FSK)
	Multimodal Frequency Shift Keying (MM-2FSK)
	Algorithm
	Efficient Implementation


	Experimental Setup
	Dataset
	Implementation Details

	Evaluation
	Metrics
	Ablation with respect to Frequency Differences
	Comparison with the State of the Art

	Discussion
	Conclusion
	References

