
Efficient Perspective-Correct 3D Gaussian Splatting

Using Hybrid Transparency

Florian Hahlbohm1 , Fabian Friederichs1 , Tim Weyrich2,3 , Linus Franke2 ,

Moritz Kappel1 , Susana Castillo1 , Marc Stamminger2 , Martin Eisemann1 , and Marcus Magnor1,4

1Computer Graphics Lab, TU Braunschweig, Germany
2Visual Computing Erlangen, FAU Erlangen-Nürnberg, Germany

3University College London (UCL), United Kingdom
4Department of Physics and Astronomy, University of New Mexico, USA

https://fhahlbohm.github.io/htgs/

Figure 1: We present the first perspectively and simultaneously geometrically accurate approach for real-time rendering of 3D Gaussian

splats. Our temporally stable blending formulation based on hybrid transparency effectively removes the popping artifacts caused by the

approximate, global sorting scheme of 3D Gaussian Splatting (3DGS) [KKLD23]. Additionally, we replace the approximate projection used in

3DGS with a novel, numerically stable formulation for evaluation of general 3D Gaussians along per-pixel rays to improve rendering quality.

We also achieve a significant speedup compared to state-of-the-art approaches addressing these challenges [HYC∗24,RSP∗24], as our blending

formulation only requires partial depth-ordering and our splat evaluation is well-suited for rasterization.

Abstract

3D Gaussian Splats (3DGS) have proven a versatile rendering primitive, both for inverse rendering as well as real-time exploration

of scenes. In these applications, coherence across camera frames and multiple views is crucial, be it for robust convergence of a

scene reconstruction or for artifact-free fly-throughs. Recent work started mitigating artifacts that break multi-view coherence,

including popping artifacts due to inconsistent transparency sorting and perspective-correct outlines of (2D) splats. At the same

time, real-time requirements forced such implementations to accept compromises in how transparency of large assemblies of

3D Gaussians is resolved, in turn breaking coherence in other ways. In our work, we aim at achieving maximum coherence,

by rendering fully perspective-correct 3D Gaussians while using a high-quality approximation of accurate blending, hybrid

transparency, on a per-pixel level, in order to retain real-time frame rates. Our fast and perspectively accurate approach for

evaluation of 3D Gaussians does not require matrix inversions, thereby ensuring numerical stability and eliminating the need

for special handling of degenerate splats, and the hybrid transparency formulation for blending maintains similar quality as

fully resolved per-pixel transparencies at a fraction of the rendering costs. We further show that each of these two components

can be independently integrated into Gaussian splatting systems. In combination, they achieve up to 2× higher frame rates, 2×

faster optimization, and equal or better image quality with fewer rendering artifacts compared to traditional 3DGS on common

benchmarks.

CCS Concepts

• Computing methodologies → Rendering; Point-based models; Rasterization; Machine learning approaches;

a
rX

iv
:2

4
1
0
.0

8
1
2
9
v
2

[c

s.
G

R
]

 1
1
 N

o
v
 2

0
2
4

https://orcid.org/0009-0004-8710-1433
https://orcid.org/0000-0003-0777-7229
https://orcid.org/0000-0002-4322-8844
https://orcid.org/0000-0001-8180-0963
https://orcid.org/0000-0001-9507-5141
https://orcid.org/0000-0003-1245-4758
https://orcid.org/0000-0001-8699-3442
https://orcid.org/0000-0002-8673-4405
https://orcid.org/0000-0003-0579-480X
https://fhahlbohm.github.io/htgs/

2 of 13 Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

1. Introduction

Novel view synthesis has undergone a significant transformation

with the advent of Neural Radiance Fields (NeRF) [MST∗20] and

3D Gaussian Splatting (3DGS) [KKLD23], both of which have

established themselves as powerful techniques for rendering com-

plex 3D scenes. Among these, 3DGS has emerged as the de-facto

representation for user-facing radiance field applications due to its

fast optimization and real-time rendering capabilities. Its speed and

efficiency stem from an explicit point-based representation, where

each point’s extent is modeled by an anisotropic 3D Gaussian. Using

fast, tile-based rasterization, this can be efficiently implemented on

modern GPUs.

However, the remarkable performance of 3DGS is achieved

through a series of approximations that, while effective in many

scenarios, introduce limitations in multi-view consistency. One sig-

nificant issue arises from the affine approximation used in projecting

3D Gaussian splats onto the image plane, causing differing pixel

contributions depending on camera placement. Another one is the

per-primitive sorting, which results in patchy colors appearing and

disappearing during movements (called popping [RSP∗24]). In order

to solve the issues, it is necessary to accurately sort and evaluate

Gaussians per pixel, introducing a strong bottleneck on the sorting

stage. In this paper, we introduce an pipeline which improves the orig-

inal 3DGS framework in eliminating these artifacts while offering

superior performance through a hybrid transparency approximation.

3DGS Ours

Figure 2: In 3DGS [KKLD23], Kerbl et al. use an affine approxi-

mation for projecting 3D Gaussians. Common benchmarks do not

include viewpoints where this approximation matter is highlighted.

Here, we demonstrate the benefits of our perspective-correct projec-

tion by comparing renderings from 3DGS and our method.

For projection artifacts, although the affine approximation per-

forms well on benchmark datasets, it fails to model perspective

distortion correctly, especially when parts of the scene are viewed at

close distances. The result are visually disturbing artifacts, where

the projected Gaussians take on extreme, distorted shapes, severely

affecting the rendering quality (see Fig. 2).

Recent work on 2D Gaussian Surfels [HYC∗24] has made

strides in achieving perspective-accurate rendering by leverag-

ing established techniques from Sigg et al. [SWBG06] and

Weyrich et al. [WHA∗07]. For 3D Gaussians, concurrent research

explores evaluating splats by calculating intersection points with

per-pixel viewing rays [YSG24]. This approach can be implemented

in ray-tracing frameworks [MLMP∗24], whose rendering speeds are

significantly lower. Alternatively, the rasterization-based approach

faces numerical instability due to the matrix inversions required,

making optimization via gradient descent challenging and prone to

catastrophic failure if handled incorrectly.

In this paper, we propose a fast, differentiable method for

perspective-accurate 3D Gaussian splat evaluation at the point

of maximum contribution along per-pixel viewing rays that avoids

matrix inversion entirely.

The second issue with 3DGS lies in depth ordering during render-

ing, where only the view-space depth of the mean is considered. This

causes incorrect per-pixel blending order of fragments, leading to

the so-called “popping” artifacts that disrupt multi-view consistency

and especially the viewing experience in motion. Recent work, such

as StopThePop [RSP∗24], addresses this through hierarchical sorting,

which is comprised of global presorting and then locally sorting

within a sliding window, with progressively lower tile sizes.

We propose a similar idea, based on the established rendering

paradigm of Hybrid Transparency [Wym16], which lets us skip the

global presorting and provides high performance. By alpha-blending

the first fragments (called the core) in correct depth-order per

pixel and accumulating remaining contributions (the tail) using

an order-independent residual, our method mitigates the popping

artifacts (see Fig. 3) while maintaining superior performance.

View Rotated View

Approximate Sorting + Alpha Blending (3DGS)

View Rotated View

Hybrid Transparency (Ours)

Figure 3: Radl et al. [RSP∗24] discuss how 3DGS approximates

depth-ordering for alpha blending, leading to popping artifacts dur-

ing view rotation. To solve this without sacrificing performance, we

propose a hybrid transparency approach, combining alpha blending

with order-independent transparency, resulting in temporally stable

rendering and an improved viewing experience.

These two enhancements – perspective-accurate splat evaluation

Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 3 of 13

and improved depth-ordering – can be integrated into existing

3DGS systems independently. In our implementation, we combine

both improvements, demonstrating that they not only eliminate the

respective artifacts but also enhance rendering speed, crucial for

real-time applications that rely on fast scene inspection. In summary,

we make the following contributions:

• We present a novel, matrix inversion-free ray-splat intersection

method within a differentiable renderer for 3D Gaussian splats,

resulting in numerically stable optimization and fully perspective-

correct rendering.

• We introduce hybrid transparency to 3D Gaussian splat rendering,

resulting in both very stable results and improved performance.

• We evaluate our efficient implementation, which outperforms es-

tablished methods significantly, while maintaining visual quality.

2. Related Work

This work is at the intersection of novel view synthesis, Gaussian

splatting, and order-independent transparency.

2.1. Novel View Synthesis

Novel view synthesis aims to render images of a scene from arbitrary

viewpoints given a fixed number of input images.

The field has recently been revolutionized by Neural Radiance

Fields (NeRF) introduced by Mildenhall et al. [MST∗20]. NeRF

represents a scene by optimizing a large MLP that maps posi-

tions and viewing directions to volumetric density and color. The

use of differentiable volume rendering enables optimization us-

ing gradient descent, which leads to high-quality results; however,

NeRF’s slow training and rendering process hinders its use in inter-

active applications. To accelerate NeRF, voxel grids with trilinear

interpolation were introduced, offering faster, continuous repre-

sentations [FKYT∗22, SSC22]. Memory-efficient methods, such

as multi-resolution hash tables [MESK22] and tensor factoriza-

tion [CXG∗22, RSV∗23], further reduce computational overhead.

The current state-of-the-art method in terms of image quality, Zip-

NeRF [BMV∗23], combines these grid-based methods with solutions

addressing aliasing issues [BMT∗21,BMV∗22].

Alternatively, point-based models use explicit point clouds for

geometry, rendering images through fast rasterization. Due to the

discrete nature of point clouds, recent point-based radiance field

methods employ large convolutional neural networks (CNN) for

hole-filling in image-space [ASK∗20, RFS22, FRF∗23, KPLD21,

KLR∗22,HFF∗23], but these CNNs are computationally expensive.

Addressing this limitation, Franke et al. showed that assigning a

radius to each point in combination with trilinear interpolation

into an image pyramid allows using a smaller CNN [FRFS24].

While enabling fast rendering, image quality of point-based mod-

els is often lacking behind implicit NeRF- and grid-based models.

Very recently, Hahlbohm et al. showed that point-based models

and grid-based models can be combined to improve image quality

and robustness [HFK∗24]. Remaining issues with point-based mod-

els are temporal instabilities and the reliance on dedicated GPUs,

which are both due to the used CNN. Another approach involves

converting a trained NeRF model into a faster representation for

inference [HSM∗21,YLT∗21]. Recent methods achieve impressive

frame rates with only a small quality loss via triangle mesh bak-

ing [YHR∗23,RGS∗24] or distilling of state-of-the-art NeRF models

into memory-efficient, hybrid representations [DHR∗24]. While they

render exceptionally fast even on low-end mobile devices, a major

disadvantage is their reliance on the NeRF model that needs to

be trained before the – often equally expensive – baking process.

Other approaches that proved effective directly optimize a triangle

meshes [CFHT23] or a set of tetrahedra [KS23].

2.2. Gaussian Splatting

In early work on point-based rendering, points were rasterized as

opaque splats [GD98,RL00,PZVBG00] and thus suffered from strong

aliasing. It was shown that quality can be significantly improved using

semitransparent splats [ZPvBG01b], however this requires costly

sorting and blending operations. To address performance issues,

fast algorithms for then GPUs [BHZK05] or dedicated hardware

implementations [WHA∗07] were proposed.

More recently, point-based rendering regained momentum as a

powerful primitive for differentiable rendering in novel view syn-

thesis [KPLD21,ASK∗20,RFS22]. In 2023, Kerbl et al. [KKLD23]

re-introduced rasterization-based rendering of point primitives with

anisotropic Gaussian extent in their seminal work 3D Gaussian Splat-

ting (3DGS). Utilizing fast, tile-based rasterization [LZ21], 3DGS

optimizes a set of explicit 3D Gaussians via gradient descent and an

adaptive density control mechanism. Due exceptionally fast rendering

during inference, 3DGS has inspired a plethora of follow-up research

addressing, e.g., anti-aliasing [YCH∗24], compression [BKL∗24],

dynamic scenes [LKLR24,WYF∗24], large scenes [KMK∗24], and

the reliance on an initial point cloud [KRS∗24, NMR∗24]. Espe-

cially relevant to this work is StopThePop by Radl et al. [RSP∗24],

which employs a hierarchical sorting approach to reduce popping

artifacts originating from approximate sorting used in 3DGS. No-

tably, the per-pixel ordering resulting from this hierarchical sorting

approach is not guaranteed to be fully correct. We also present a

method for avoiding these popping artifacts, but achieve this by

changing the blending procedure to a hybrid transparency-based

approach so that our method only requires partial depth-ordering

of the initial splats contributing to each pixel color. Thus, we

avoid the need for a sophisticated sorting implementation which,

even when compared to the approximate solution used by 3DGS,

improves performance. Equally important in the context of this work

is the perspectively accurate 2D Gaussian Splatting (2DGS) by

Huang et al. [HYC∗24] as well as concurrent work that introduces

ray tracing into the 3DGS framework [YSG24,MLMP∗24]. While

the latter also provide a perspectively accurate rendering formulation

by using ray tracing, they introduce a significant slowdown during

both the optimization and subsequent inference. Furthermore, their

evaluation of the 3D Gaussian primitives relies on matrix inversion,

which is prone to numerical instabilities when Gaussians fall flat

along one or more principal axes. The perspectively correct approach

by Huang et al. [HYC∗24] circumvents these numerical instabilities

by utilizing an optimized approach for 2D, ie., degenerate 3D Gaus-

sians [SWBG06,WHA∗07]. In this work, we present an approach

that enables using perspectively correct rendering of 3D Gaussians

through ray-splat intersection: we extend the perspectively correct

4 of 13 Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

approach of Weyrich et al. [WHA∗07] to work with non-degenerate

3D Gaussians, which enables the use of ray-splat intersection for

rasterization-based rendering with negligible overhead and no issues

with respect to numerical instabilities.

2.3. Order-Independent Transparency

The seminal Porter-Duff algorithm [PD84] blends two semi-

transparent surfaces correctly, but extending it to more than two

requires costly sorting of the input primitives, and even produces

wrong results in case of intersecting primitives. Several techniques

have been developed relying on even more costly per-pixel sorting

to circumvent this problem, either by sorting explicitly [Car84]

or implicitly using multiple render passes [Eve01, BM08]. These

algorithms are in general invariant to the order of input primitives

and produce correct results, and are therefore called exact order-

independent transparency (OIT) methods. A good overview can be

found in [Wym16]. A plethora of approaches try to approximate

exact OIT by avoiding the costly sorting step. Some of them are not

truly order-independent: the outcome still varies slightly depending

on the order of input primitives [BCL∗07,ESSL10,SML11,SV14].

True, approximate OIT algorithms generally modify the blending

operations to achieve order-invariance. Ignoring the order-dependent

parts of the alpha blending formula results in the “weighted sum”

operator [Mes07], which works well with surfaces of small opac-

ity but becomes increasingly inaccurate for more opaque surfaces,

causing over-darkening or over-brightening. The weighted blended

order-independent transparency (WBOIT) operator avoids the over-

darkening by replacing the opacity and surface colors with opacity-

weighted averages and introducing a monotonic decreasing depth

weighting factor, heuristically reducing the influence of distant sur-

faces [MB13]. This approach works well for surfaces of low opacity

and similar color, like smoke, but becomes problematic for almost

opaque surfaces, and the weighting function needs to be tuned for

every scene to achieve optimal results. Extending this approach to

rendering the surfaces into layers and applying the WBOIT oper-

ator to each before blending the resulting colors in order provides

an interesting trade-off between quality and efficiency [FEE21].

Moment-based transparency techniques remedy some of the short-

comings of WBOIT by computing moments of the transmittance

which are used in a second pass to reconstruct an approximate

transmittance function, that weighs the influence of each surface

on the final color [MKKP18]. Sharp changes in the transmittance

function are not well captured at a lower number of power moments,

whereas higher numbers decrease the computational efficiency. As

the influence of later surfaces is generally less than the first surfaces

due to decreasing transmittance, another, truly order-independent

approach is hybrid transparency that blends the first surfaces

correctly (including sorting), whereas the remaining surfaces are

blended without sorting [MCTB13]. In this work, we integrate this

hybrid transparency approach into the 3DGS framework and extend

the formulation proposed by Maule et al. to improve its behavior

within a gradient descent-based optimization scheme.

3. Method

We introduce the employed scene representation and then describe

the two parts of our contribution.

3.1. Preliminaries

Following Kerbl et al. [KKLD23], we represent the scene using a set

of 3D points with anisotropic Gaussian extent as a proxy for geometry.

Cutting each Gaussian at 3f results in ellipsoid-shaped splats. Each

splat is defined by its 3D mean - ∈ R3, a scalar opacity value

> ∈ R, three principal tangential vectors tD, tE , tF ∈ R3 modeling its

orientation, and three scalars BD, BE , BF ∈ R modeling its scale. Note

that tD, tE , tF represent a 3D rotation, which allows modeling these

parameters using a quaternion @ ∈ R4 that is easier to optimize

via gradient descent. For rendering, we obtain a valid opacity

value in [0,1] using a Sigmoid activation, represent BD, BE , BF in

logarithmic space, and ensure @ is normalized. The view-dependent

color representation based on spherical harmonics (SH) is identical

to 3DGS, i.e., each point uses SH up to degree 3 resulting in 48

coefficients total.

For any point x ∈ R3, we can obtain an U value for a given 3D

Gaussian by multiplying its opacity with the value of the Gaussian

at that point:

U = > · e−
1
2
ρ(x)2

using ρ(x)2 = (x− -))O−1 (x− -), (1)

where O−1 can easily be computed from (tD, tE , tF) and (BD, BE , BF)

(cf. Kerbl et al. [KKLD23]). These U values are then used in conjunc-

tion with the view-dependent RGB color c ∈ R3 when computing

per-pixel colors through standard depth-sorted alpha blending of all

contributing splats:

� =

#∑
8=1

U8)8c8 , with)8 =

8−1∏
9=1

(1−U 9). (2)

3.2. Accurate Splat Bounding and Evaluation

In 3DGS, Kerbl et al. [KKLD23] project a 3D Gaussian onto the

image plane using the Jacobian of the affine approximation of the

projective transformation [ZPvBG01a]. The result is a 2D Gaussian

that can easily be evaluated for each pixel and also allows for easy

construction of an axis-aligned bounding box around the center (e.g.,

at 3f) in screen space for accelerated computation. However, this

approach is not fully perspective-accurate, meaning it introduces

artifacts when splats are viewed from certain angles. For example,

these artifacts become visible when placing the camera on top of a

flat surface with the viewing direction perpendicular to the surface

normal (see first row in Fig. 2).

In this work, we propose a solution for this problem that builds

upon an established approach for perspectively accurate rendering

of ellipsoidal surfaces by Sigg et al. [SWBG06] and the respective

optimizations by Weyrich et al. [WHA∗07] for 2D Gaussian splats.

It should be noted that these approaches elegantly avoid the matrix

inversions required by similar approaches (e.g., Eq. (1)), which makes

them numerically stable even for degenerate splats, i.e., those where

one or more main axes vanish. Notably, Huang et al. [HYC∗24] also

base their perspectively accurate ray-splat intersection and evaluation

on the aforementioned work. However, their approach only works for

2D Gaussians, i.e., degenerate splats. In contrast, we now introduce

an approach that enables perspectively accurate 3D splat evaluation

along per-pixel viewing rays. Thus, our approach is more general

Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 5 of 13

∥m∥ = 2�

� =

∥d∥ ∥x∥
2

ρ = ∥x∥

Figure 4: The perspectively correct screen-space bounding box of a splat (a) is given by the projection of its bounding frustum in view space

(b). When transformed into local splat coordinates, the frustum planes align with tangential planes of the unit sphere (c). Our approach for

splat evaluation along viewing rays makes use of the Plücker coordinate representation (d : m). In local splat coordinates, the point along the

ray that maximizes the Gaussian’s value corresponds to the point x that minimizes the perpendicular distance ∥x∥ to the origin (d). Parts (a-c)

courtesy of Weyrich et al. [WHA∗07]; used with permission.

compared to Huang et al., as the 3D Gaussians we use may still

degenerate to 2D Gaussians without impacting the optimization or

rendering due to the numerical stability of our approach.

We start by describing the approach for computing tight, axis-

aligned screen-space bounding boxes for each 3D Gaussian. We

define the model-view matrix " ∈ R4×4, the projection to clip-space

% ∈ R4×4, and the viewport transform+ ∈ R4×4 mapping to window

coordinates. Using the per-splat attributes described in Sec. 3.1, the

transformation) ′ ∈ R4×4 from the normalized splat space (where

the Gaussian’s ellipsoid becomes the unit sphere) to screen space is:

) ′ =+%"), where) =

©«

| | | |
BD tD BE tE BF tF -
| | | |

0 0 0 1

ª®®®¬
(3)

is the transformation from normalized splat space to world space. Us-

ing Weyrich et al.’s optimization of Sigg et al.’s bounding box

computation [SWBG06], extended to non-degenerate (full 3D)

Gaussians, the desired tight 3D bounding box in screen space

is [11, C1] × [12, C2] × [13, C3] (bottom and top values, 18 and C8 , for

8 ∈ {1,2,3} the G, H, and I coordinate, respectively) is:

18 = ?8 − ℎ8 (4)

C8 = ?8 + ℎ8 , (5)

with

B = ⟨(ρ2 ,ρ2 ,ρ2 ,−1),) ′4 ⊙)
′
4⟩ , ρ2 = 2ln

>

gU
, (6)

f =
1

B
(ρ2 ,ρ2 ,ρ2 ,−1) , (7)

?8 = ⟨ f ,) ′8 ⊙)
′
4⟩ , (8)

ℎ8 =

√
?2
8
− ⟨ f ,) ′

8
⊙) ′

8
⟩ , (9)

and) ′
8

the 8-th row of) ′, ⊙ denoting component-wise multiplication,

and the dot product denoted by ⟨·, ·⟩. A key advantage of this

calculation, for which we provide a visual explanation in Fig. 4,

is that it offers a closed-form solution without the need for matrix

inversion and regardless of whether the ellipsoid is degenerate in

any direction. Following Radl et al. [RSP∗24], we also compute an

individual cutoff value for each splat to obtain smaller bounding

boxes when their opacity value is less than one based on gU, a

hyperparameter defining the minimum U value, Eq. (1), of a fragment

for it not to be skipped during blending.

Next, we seek to compute the value of the 3D Gaussian for

a given viewing ray. In computer graphics, ray intersections with

deformed primitives, such as our 3D splats, are an established practice

since the dawn of ray tracing, generally following the approach of

inversely transforming a viewing ray into the undeformed space.

In our case, re-using quantities of the bounding-box setup above,

this would mean transforming the ray by (+%"))−1 into splat

space, where the distance of the transformed ray to the origin

yields ρ, Eq. (1). In order to avoid the matrix inversion that we

successfully sidestepped during bounding-box calculation, we once

again follow Weyrich et al. and represent a viewing ray through a

pixel at (Gs, Hs) as two perpendicular planes† 0G = (1,0,0,−Gs)
⊤

and 0H = (0,1,0,−Hs)
⊤ in screen space. In contrast to 3D points,

transforming those planes by (+%"))−1 into planes 0s
G/H

in splat

space requires the inverse-transposed mapping, that is:

0s
G/H

=

(
(+%"))−1)−⊤0G/H = (+%"))⊤0G/H , (10)

once again sidestepping inversion. Next up, intersection of 0s
G and

0s
H yields the viewing ray in splat space, and its distance to the origin

is ρ. In contrast to Weyrich et al., however, ρ cannot quite as easily be

computed, due to the non-degeneracy of our 3D Gaussians. Instead,

we employ the dual Plücker coordinate representation that derives

the mapped viewing ray L∗
s from the intersection of 0s

G/H
from their

coefficients 0s
G =: (01 : 02 : 03 : 00), and 0s

H =: (11 : 12 : 13 : 10),

respectively:

L∗
s = (?23 : ?31 : ?12 : ?01 : ?02 : ?03) , (11)

with ?8 9 =

����08 0 9

18 1 9

���� = 081 9 − 0 918 . (12)

The line’s dual Plücker coordinates L∗
s are numerically equivalent

to its primal Plücker coordinates Ls up to some common scaling

† We follow the common convention of representing planes as homogeneous

vectors p = (0, 1, 2, 3)⊤, so that a point x lies on the plane iff p⊤x = 0.

6 of 13 Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

factor _:

Ls =: (d : m) = (?01 : ?02 : ?03 : ?23 : ?31 : ?12) (13)

= (_?23 : _?31 : _?12 : _?01 : _?02 : _?03) (14)

where d is the ray direction in splat space and m is its moment

around the origin (see Fig. 4 for a visualization). From the known

equality distance(Ls,origin) =
∥m∥
∥d∥

, it follows that:

ρ(x)2 =

∥_(?01, ?02, ?03)⊤∥2

∥_(?23, ?31, ?12)⊤∥2
=

0011 − 0110

0012 − 0210

0013 − 0310

2

0213 − 0312

0311 − 0113

0112 − 0211

2
. (15)

Note that we directly compute ρ(x)2 for Eq. (1). This formulation

is numerically stable, as the only potential issue – a vanishing de-

nominator in Eq. (15) – can easily be detected and corresponds

to the ray missing the splat. Conveniently, the obtained value cor-

responds to the point along the pixel’s viewing ray where the

Gaussian has the highest value, essentially making it equivalent to

the numerically unstable and slower approaches used in concurrent

works [YSG24,MLMP∗24]. Compared to Kerbl et al. [KKLD23],

our calculations incur reduced setup costs for each Gaussian but

slightly higher costs per pixel, which is in fact a desirable tradeoff

whenever graphics primitives cover only few pixels [MBDM97].

Moreover, the added computations are exclusively additions and

multiplications, except for the division in Eq. (15), meaning they are

both fast and trivial to differentiate.

3.3. Temporally-Stable Rendering via Hybrid Transparency

In 3DGS, Kerbl et al. [KKLD23] use a tile-based rasterization

approach to efficiently render images from a set of 3D Gaussian

primitives. To achieve robust optimization via gradient descent, they

compute per-pixel color by applying standard U-blending, Eq. (2),

in depth-sorted order. In this work, we propose to integrate a hybrid-

transparency approach for blending into the 3DGS framework. This

is motivated by three observations: (1) The global sorting scheme

proposed by Kerbl et al. [KKLD23] sorts splats as a whole, leading

to incorrectly resolved splat-splat intersections and temporal inco-

herence (“popping”) during rendering and optimization; resolving

these artifacts through a full sort of all 3D Gaussian pixel fragments,

however, is prohibitively slow and thus approximate sorting is re-

quired (cf. Radl et al. [RSP∗24]). (2) As we will demonstrate in our

experiments, using “full” OIT, which forgoes sorting completely,

works well during optimization and even improves background re-

construction but results in semi-transparent foreground rendering,

which is clearly undesirable for novel-view synthesis and recon-

struction methods. (3) Blending only the first contributions for

each pixel has been shown to work well in differentiable rendering

frameworks while also much faster than approaches that require a

complete sort [LZ21,FRFS24].

The hybrid-transparency approach [MCTB13] splits up the per-

pixel color computation into two parts: The core that uses standard

U-blending to blend the first contributions for each pixel, including

sorting. All remaining contributions are combined into a tail, that

is blended without sorting. To decide whether a splat is one of the

first , we need to compute a pixel-specific depth value for each of

them, i.e., the I-value of the point of evaluation x (see Fig. 4) in

view space. Re-using the intermediate values of our splat evaluation

(see Sec. 3.2), xview can be computed efficiently by

xview = ")
d×m

∥d∥2
. (16)

As in Sec. 3.2, xview is the splat’s point of maximum contribution

along the pixel ray, which again makes our computation compatible

with the numerically unstable and slower approaches used in recent

work [RSP∗24]. In our implementation, we keep track of the first

 contributions and accumulate all of the (# −) contributions for

each pixel to then compute its color as

� =

 ∑
8=1

U8)8c8 +) +1

(
(1−)tail)ctail +)tailcbg

)
, (17)

with

)8 =

8−1∏
9=1

(1−U 9), ctail =

∑#
8= +1

U8c8∑#
8= +1

U8
,)tail =

#∏
8= +1

(1−U8) . (18)

Notably, our computation of)tail is more accurate compared to

the average-based formulation of Maule et al. [MCTB13]. As the

partial derivative of the blending function is the same for all splats

inside the tail, our approach allows pre-computing all required

partial derivatives for each pixel during the forward pass. Thus, our

backward pass can be implemented very efficiently.

4. Experiments

We conduct multiple experiments on established datasets to validate

our approach.

4.1. Setup

Following recent work, we evaluate on the established Mip-

NeRF360 [BMV∗22] and Tanks and Temples [KPZK17] datasets,

which provide a diverse set of 17 real scenes with varying chal-

lenges. We use all nine scenes from the Mip-NeRF360 dataset as

well as all eight scenes from the intermediate set of the Tanks and

Temples dataset resulting in a total of 17 scenes. This allows us to

evaluate our method on a broad spectrum of challenges regarding

both geometric and photometric aspects. As is common practice, we

use the 4×/ 2× downscaled images for the outdoor/indoor scenes

of the Mip-NeRF360 dataset. For the Tanks and Temples scenes,

we use the full-resolution images to evaluate performance at full

HD resolution. To compute meaningful quality metrics, we use the

established 7:1 train/test split [BMV∗22] for all scenes. Central to

our evaluation is the comparison against the original 3D Gaussian

Splatting [KKLD23]. Furthermore, we compare against the recent

StopThePop [RSP∗24] and 2D Gaussian Splatting [HYC∗24], as

they also provide solutions for the problems addressed in this work.

We also compare against Gaussian Opacity Fields (GOF) [YSG24],

a very recent work that uses ray tracing-based volume rendering.

For all baselines, we use the official implementation to compute the

results for all 17 scenes and use the same script for all quality metric

Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 7 of 13

Mip-NeRF360 [BMV∗22] (Img. Res. ≈ 1MP–1.5MP) Tanks&Temples [KPZK17] (Img. Res. ≈ 2MP)

Method SSIM↑ PSNR↑ LPIPS↓ Training FPS #Splats SSIM↑ PSNR↑ LPIPS↓ Training FPS #Splats

Zip-NeRF [BMV∗23] 0.828 28.56 0.219 5h 0.2 N/a 0.878 26.75 0.233 5h 0.1 N/a

3DGS [KKLD23] 0.814 27.20 0.254 18m40s 316.6 3.31M 0.866 25.27 0.276 20m18s 216.2 1.50M

StopThePop [RSP∗24] 0.814 27.30 0.252 12m03s 212.5 3.28M 0.866 24.99 0.270 14m27s 206.2 1.49M

2DGS [HYC∗24] 0.795 26.81 0.297 21m08s 134.9 2.01M 0.851 24.55 0.314 28m45s 95.8 0.95M

GOF [YSG24] 0.821 27.27 0.238 1h16m 16.7 2.91M 0.866 25.01 0.274 1h35m 12.3 1.26M

Ours 0.822 27.17 0.234 10m07s 457.3 2.19M 0.866 24.62 0.272 8m33s 380.7 0.81M

Table 1: Quantitative comparisons on the Mip-NeRF360 and Tanks and Temples datasets. Our approach of using perspectively correct splat

evaluation in combination with hybrid transparency significantly reduces training and rendering times with image quality being similar to the

baselines’. Excluding Zip-NeRF, the three best results are highlighted in green in descending order of saturation.

computations. We use a single RTX 4090 for all experiments and

outline our approach for measuring frame rates in Appendix A.

4.2. Implementation and Optimization

We implement our method from scratch in PyTorch and CUDA

using the implementation of Kerbl et al. [KKLD23] as a reference.

While the optimization pipeline and hyperparameters are mostly the

same as in 3DGS, we make multiple modifications. First, we replace

the opacity reset with a decay strategy [RSP∗24] that multiplies

splat opacity by _> = 0.9995 every 50 iterations during densification.

We tackle aliasing problems by employing our own fast CUDA

implementation of the 3D filter proposed by Yu et al. [YCH∗24].

As the screen-space gradients 3DGS uses for densification are not

available with our splat evaluation scheme, we follow Moenne-

Loccoz et al. and instead directly use the gradient of the splat

means scaled by half the respective distance to the camera in view

space [MLMP∗24]. Furthermore, we adapt the densification changes

from GOF to our approach [YSG24] and apply visibility score-

based pruning as proposed by Niemeyer et al. [NMR∗24]. For our

blending formulation, we use a core with = 16 and employ a

second threshold g = 0.05 specifying the minimum U of a fragment

to be considered for the core. As the insertion sort that we employ

for keeping track of per-pixel core causes significant divergence, we

reduce the tile size to 8×8 in our implementation. Lastly, we make

use of an optimized SSIM implementation [MKVC∗24] to speed up

loss computation.

4.3. Results

The quantitative results in Tab. 1 show that our approach provides

significantly faster training and rendering. Compared to the next

fastest baseline, we achieve a training speedup of 1.4× and ren-

der 1.6× faster on average. In terms of image quality, we observe

that our method achieves about equal results across the board.

However, all 3DGS-based approaches are clearly outperformed by

Zip-NeRF [BMV∗23]. Taking our contributions into consideration,

we observe that our approach outperforms approaches with perspec-

tively correct splat evaluation: Compared to 2DGS [HYC∗24], we

achieve better results across the board reassuring that 3D Gaussian

splats are more expressive than the 2D Gaussian surfels used by

2DGS. GOF [YSG24] achieves slightly higher image quality but

requires longer training and fails to render in real-time. It should be

noted that 2DGS and GOF were fine-tuned for mesh extraction after

optimization, which is an interesting topic but not a focus of this work.

Seeing that we achieve similar image quality but faster training and

rendering compared to StopThePop [RSP∗24], the results confirm

that our approach is a valid alternative to prevent popping artifacts

for rasterization-based 3D Gaussian splat rendering.

We also show visual comparisons for multiple scenes in Fig. 5.

Beyond those comparisons, we often observe more accurate recon-

struction of the background when inspecting trained models. This is

likely caused by our perspectively correct splat evaluation that allows

better use of the multi-view signal provided by the training images

where the background is generally located near image borders where

perspective distortion has its highest influence.

Method Preprocess Tiling Blending Total

3DGS [KKLD23] 0.451 ms 2.212 ms 2.134 ms 4.797 ms

StopThePop [RSP∗24] 0.649 ms 0.738 ms 3.599 ms 4.986 ms

Ours 0.556 ms 0.754 ms 2.007 ms 3.317 ms

Table 2: Breakdown of render timings at a resolution of 1920×1080

pixels measured on an RTX 4090 GPU. For our approach, we render

the trained bicycle model (4.35M splats) for all test-set viewpoints

and average across 100 runs. Values for 3DGS and StopThePop

are copied from Radl et al. [RSP∗24], who use a slightly different

approach for their performance benchmarks but average in a similar

manner, which makes numbers comparable.

Performance Breakdown. In Tab. 2, we compare how parts of the

rendering influence the total runtime. We denote the creation of

per-tile primitive lists (cf. Kerbl et al. [KKLD23]) as tiling and per-

tile color computations as blending. The speed of 3DGS is equally

limited by tiling and blending. StopThePop [RSP∗24] implements

significant optimizations for the tiling step in an attempt to reduce the

overhead of their hierarchical sorting during blending, which is the

main bottleneck. In contrast, we use a 16-bit unsigned integer as the

key for each Gaussian/tile instance, as we do not require any global

depth-sorting. This speeds up tiling by a similar amount as the revised

culling strategy of StopThePop. Regarding the blending step, our

hybrid transparency approach requires only partial depth-ordering

making it significantly faster than the approach of StopThePop.

Perspectively Correct Splat Evaluation. As previously discussed,

our contributions can be integrated into 3D Gaussian splatting

implementations independently. Our hybrid transparency approach

8 of 13 Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

3DGS StopThePop 2DGS Ours Ground Truth

Figure 5: Visual comparisons of baselines that allow for real-time rendering.

(Sec. 3.3) is mainly a method for addressing popping artifacts without

sacrificing computational efficiency. However, our perspectively

accurate splat evaluation (Sec. 3.2) should prove beneficial across a

much broader range of applications due to its accuracy. As can be

seen in Tab. 3, using it alongside the approximately depth-ordered

alpha blending from 3DGS [KKLD23] improves results for all image

quality metrics. Note that the increase in speed compared to 3DGS

is mostly due to improved global as well as per-pixel culling, which

reduces the number of required computations.

Hybrid Transparency Ablations. To analyze the behavior of our

hybrid transparency-based blending, we perform ablations on the nine

scenes from the Mip-NeRF360 dataset [BMV∗22]. The quantitative

results shown in Tab. 4 clearly indicate that = 16 is the optimal

choice for our approach. We also show visual comparisons in Fig. 6

showing that blending without any sorting is not a valid option as

it causes the foreground to become transparent. However, we do

find that background reconstruction seems to improve in this case.

With our default configuration of = 16, omitting tail computation

during inference causes a small drop in image quality, which is most

noticeable in the sky. Importantly, not using the tail during training

causes catastrophic failure.

5. Discussion

The experiments validate that our approach improves robustness

and accuracy of the optimization due to our perspective-accurate

and numerically stable splat evaluation. Similarly, they show that

hybrid transparency can effectively be integrated into differentiable

rasterizers for 3D Gaussian splats to accelerate training and ren-

dering without sacrificing image quality. Importantly, both of our

contributions improve the rendering quality beyond what shows in

the quantitative results for standardized benchmarks. To address this,

Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 9 of 13

 = 0 = 8 Ours Ours Render w/o Tail Train w/o Tail

Figure 6: Visual comparisons for different model configurations regarding our hybrid transparency approach. Using a smaller core size

causes issues for reflective surfaces, as radiance fields commonly model these using semi-transparency. Disabling the order-independent tail

only slightly reduces quality, especially in the sky, whereas not using it during optimization results in catastrophic failure.

Method SSIM↑ PSNR↑ LPIPS↓ Training FPS

3DGS 0.730 24.64 0.265 21m17s 293.2

Ours 0.742 24.62 0.237 12m09s 480.6

Ours w/o per-pixel HT 0.748 24.81 0.230 17m26s 448.7

Table 3: We showcase the potential of our perspectively correct

splat evaluation by omitting our hybrid transparency-based blending

in favor of the approximately depth-ordered alpha blending from

3DGS [KKLD23]. As it forgoes per-pixel ordering, this version

of our model is subject to popping artifacts, and it is slightly

less computationally efficient than our default configuration, but

outperforms 3DGS across all metrics. The reported values are

averaged results for the five outdoor scenes from the Mip-NeRF360

dataset [BMV∗22].

Configuration SSIM↑ PSNR↑ LPIPS↓ Training FPS

 = 8 0.811 26.70 0.245 10m02s 437.9

 = 32 0.821 27.12 0.236 31m11s 372.4

Ours (= 16) 0.822 27.17 0.234 10m07s 457.3

Inference w/o Tail 0.817 26.92 0.240 10m07s 467.0

Table 4: Ablations for our hybrid transparency approach computed

on the nine scenes from the Mip-NeRF360 dataset [BMV∗22].

our supplemental includes two videos that clearly demonstrate the

advantage of our two-part contribution, which we encourage the

reader to view. The perspectively correct splat evaluation allows

our rendering to avoid artifacts that arise from the approximate

projection used in 3DGS [KKLD23]. We find that the commonly

used benchmark datasets largely fail to reveal this artifact making

it invisible in quantitative evaluation. However, when inspecting

trained 3D Gaussian splat models in a real-time viewer, it is very

easy to find scenarios where the perspectively inaccurate projection

causes disturbing artifacts.

Equally as noticeable are the popping artifacts caused by the

approximate depth-ordering in 3DGS. StopThePop [RSP∗24] uses a

hierarchical sorting approach to resolve this issue. They sort splats

globally based on their means [KKLD23] and then use a sliding

window approach to sort the per-tile lists approximately. In contrast,

our approach guarantees correct sorting order for the first elements

in each pixel and then uses fast blending without sorting for the rest.

Our results show that this strategy results in a good tradeoff between

quality and performance: The correct sorting of the front-most

fragments leads to high rendering quality and temporal stability,

with little impact on performance. While the remaining elements

from the tail are essential for robust optimization as demonstrated in

Fig. 6, our results show that the much cheaper unsorted blending is

sufficient to maintain high performance, very good rendering quality,

and robust optimization.

The artifacts addressed by our approach are most apparent while

the camera is moving (see our supplemental videos), which is an

issue for VR/AR applications or fast-paced games where the user

rarely keeps their head or the camera perfectly still. As VR also

requires high frame rates to mitigate cybersickness, we believe that

the combined advantages of our approach – fast, perspective-correct

rendering without popping artifacts – make it a great fit for such

applications. Another area where we think our approach could prove

beneficial are 3DGS implementations for low-end devices, which

currently require expensive CPU sorting. As our approach naturally

supports depth peeling due to the fixed size of the core, it should

be possible to implement a hardware-accelerated viewer for our

approach that does not require a dedicated sorting routine.

Regarding reconstruction and image quality, we observe that

the adaptive density control mechanism by Kerbl et al. [KKLD23]

introduced for 3DGS has a significant influence while being very

sensitive to changes. As outlined in Sec. 4.2, approaches evaluating

splats along per-pixel viewing rays do not naturally provide the

information used by the densification approach of 3DGS, i.e., the

gradient of the splat’s position in view-space. After experimenting

with the solutions presented in recent works [KRS∗24, HYC∗24,

MLMP∗24], we find scaling the gradients of the 3D positions by

two times the distance to the camera [MLMP∗24] works best for our

approach. Nonetheless, we find that the direct connection between

local splat attributes and the global densification scheme introduces

issues regarding the robustness of all 3DGS-based approaches we

investigated. Additional challenges, such as the photometric variation

in images from the Tanks and Temples dataset [KPZK17] further

amplify this issue.

Limitations and Future Work. Naturally, our approach is not

without limitations. While sole use of alpha blending allows for early

stopping based on a preset transmittance threshold [KKLD23], this

is not an option for hybrid transparency by default. In our current

implementation, we accumulate the RGB color and alpha of all

10 of 13 Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

per-pixel contributions that are not part of the core. Intuitively, this

is a problem when scenes become larger due to increase in depth

complexity. However, we are confident that this issue can be resolved,

e.g., by combining a depth prepass with a depth-weighting function as

in WBOIT [MB13]. Additionally, we find that our approach achieves

slightly lower PSNR than that of 3DGS, which we think is due to the

absence of a screen-space aliasing filter or multi-sampling approach.

As suggested by Huang et al. [HYC∗24], we tried using the approach

of Botsch et al. [BHZK05], but did not find it beneficial. We think it

is possible to extend our splat evaluation to efficiently handle lens

distortion thus enabling training on images without applying lossy

undistortion operations during data pre-processing. Lastly, we would

like to highlight that our hybrid transparency approach unveils an

avenue for integrating otherwise too expensive ideas into real-time

rendering of 3D Gaussians splats. While correct volume rendering

of all contributing splats is not computationally feasible, it should be

possible for the first = 16 Gaussians. Similarly, we think that the

fixed size of the core in our hybrid transparency approach allows to

use more powerful appearance models [DHR∗24] to improve image

quality.

6. Conclusion

In this paper, we addressed two significant challenges prevalent in

3D Gaussian splat rendering. First, we introduced a novel approach

for fast and perspective-accurate splat evaluation, which eliminates

artifacts that arise from the affine approximation used by current

3D Gaussian Splatting implementations. Our approach elegantly

avoids matrix inversion thus ensuring robust optimization and ac-

curate rendering without numerical instabilities, even when splats

degenerate. Second, we proposed an approach for view-consistent

rendering through hybrid transparency, which uses fast, approximate

per-pixel depth sorting that guarantees correct order for the first

contributions and thus prevents popping artifacts. Importantly, these

improvements have a largely positive impact on performance, as

evidenced by our analysis of training time, rendering speed, image

quality metrics, and visual fidelity. We believe our two-part contri-

bution can both independently and jointly improve accuracy and

efficiency of 3D Gaussian splat rendering in the future.

Acknowledgements

We would like to thank Timon Scholz and Carlotta Harms for

their help with comparisons and the supplemental material. The

authors gratefully acknowledge financial support from the German

Research Foundation (DFG) for the projects “Real-Action VR” (ID

523421583) and “Increasing Realism of Omnidirectional Videos in

Virtual Reality” (ID 491805996), as well as from the L3S Research

Center, Hanover, Germany. Linus Franke was supported by the 5G

innovation program of the German Federal Ministry for Digital and

Transport under the funding code 165GU103B.

References

[ASK∗20] Aliev K.-A., Sevastopolsky A., Kolos M., Ulyanov D.,

Lempitsky V.: Neural point-based graphics. In ECCV (2020). doi:
10.1007/978-3-030-58542-6_42. 3

[BCL∗07] Bavoil L., Callahan S. P., Lefohn A., Comba J. L., Silva

C. T.: Multi-fragment effects on the gpu using the k-buffer. In Proceedings

of the 2007 symposium on Interactive 3D graphics and games (2007),
pp. 97–104. 4

[BHZK05] Botsch M., Hornung A., Zwicker M., Kobbelt L.: High-
quality surface splatting on today’s gpus. In Proceedings Eurograph-

ics/IEEE VGTC Symposium Point-Based Graphics, 2005. (2005), IEEE,
pp. 17–141. 3, 10

[BKL∗24] Bagdasarian M. T., Knoll P., Li Y.-H., Barthel F., Hilsmann

A., Eisert P., Morgenstern W.: 3dgs.zip: A survey on 3d gaussian
splatting compression methods, 2024. arXiv:2407.09510. 3

[BM08] Bavoil L., Myers K.: Order independent transparency with dual
depth peeling. NVIDIA OpenGL SDK 1, 12 (2008), 2–4. 4

[BMT∗21] Barron J. T., Mildenhall B., Tancik M., Hedman P., Martin-

Brualla R., Srinivasan P. P.: Mip-nerf: A multiscale representation
for anti-aliasing neural radiance fields. ICCV (2021). doi:10.1109/
ICCV48922.2021.00580. 3

[BMV∗22] Barron J. T., Mildenhall B., Verbin D., Srinivasan P. P.,

Hedman P.: Mip-nerf 360: Unbounded anti-aliased neural radiance fields.
CVPR (2022). doi:10.1109/CVPR52688.2022.00539. 3, 6, 7, 8, 9,
12, 13

[BMV∗23] Barron J. T., Mildenhall B., Verbin D., Srinivasan P. P.,

Hedman P.: Zip-nerf: Anti-aliased grid-based neural radiance fields. In
ICCV (October 2023), pp. 19640–19648. doi:10.1109/ICCV51070.
2023.01804. 3, 7, 13

[Car84] Carpenter L.: The a-buffer, an antialiased hidden surface method.
In Proceedings of the 11th annual conference on Computer graphics and

interactive techniques (1984), pp. 103–108. 4

[CFHT23] Chen Z., Funkhouser T., Hedman P., Tagliasacchi A.:
Mobilenerf: Exploiting the polygon rasterization pipeline for efficient
neural field rendering on mobile architectures. In CVPR (2023).
doi:10.1109/CVPR52729.2023.01590. 3

[CXG∗22] Chen A., Xu Z., Geiger A., Yu J., Su H.: TensoRF: Tensorial
radiance fields. In ECCV (2022). doi:10.1007/978-3-031-19824-3_
20. 3

[DHR∗24] Duckworth D., Hedman P., Reiser C., Zhizhin P., Thibert

J.-F., Lučić M., Szeliski R., Barron J. T.: Smerf: Streamable memory
efficient radiance fields for real-time large-scene exploration. ACM Trans.

Graph. 43, 4 (July 2024). doi:10.1145/3658193. 3, 10, 12

[ESSL10] Enderton E., Sintorn E., Shirley P., Luebke D.: Stochastic
transparency. In I3D ’10: Proceedings of the 2010 symposium on Interac-

tive 3D graphics and games (New York, NY, USA, 2010), pp. 157–164.
4

[Eve01] Everitt C.: Interactive order-independent transparency. White

paper, nVIDIA 2, 6 (2001), 7. 4

[FEE21] Friederichs F., Eisemann E., Eisemann M.: Layered weighted
blended order-independent transparency. In Proc. Graphics Interface (GI)

(May 2021), pp. 1–6. 4

[FKYT∗22] Fridovich-Keil S., Yu A., Tancik M., Chen Q., Recht B.,

Kanazawa A.: Plenoxels: Radiance fields without neural networks. In
CVPR (2022). doi:10.1109/CVPR52688.2022.00542. 3

[FRF∗23] Franke L., Rückert D., Fink L., Innmann M., Stamminger

M.: VET: visual error tomography for point cloud completion and high-
quality neural rendering. In SIGGRAPH Asia Conference Papers (New
York, NY, USA, Dec. 2023), ACM. 3

[FRFS24] Franke L., Rückert D., Fink L., Stamminger M.: TRIPS:
Trilinear Point Splatting for Real-Time Radiance Field Rendering. Comput.

Graph. Forum 43, 2 (2024). doi:https://doi.org/10.1111/cgf.
15012. 3, 6

[GD98] Grossman J. P., Dally W. J.: Point sample rendering. In Rendering

Techniques’ 98: Proceedings of the Eurographics Workshop in Vienna,

Austria, June 29—July 1, 1998 9 (1998), Springer, pp. 181–192. 3

https://doi.org/10.1007/978-3-030-58542-6_42
https://doi.org/10.1007/978-3-030-58542-6_42
http://arxiv.org/abs/2407.09510
https://doi.org/10.1109/ICCV48922.2021.00580
https://doi.org/10.1109/ICCV48922.2021.00580
https://doi.org/10.1109/CVPR52688.2022.00539
https://doi.org/10.1109/ICCV51070.2023.01804
https://doi.org/10.1109/ICCV51070.2023.01804
https://doi.org/10.1109/CVPR52729.2023.01590
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1145/3658193
https://doi.org/10.1109/CVPR52688.2022.00542
https://doi.org/https://doi.org/10.1111/cgf.15012
https://doi.org/https://doi.org/10.1111/cgf.15012

Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 11 of 13

[HFF∗23] Harrer M., Franke L., Fink L., Stamminger M., Weyrich

T.: Inovis: Instant novel-view synthesis. In SIGGRAPH Asia Conference

Papers (New York, NY, USA, Dec. 2023), ACM. doi:10.1145/3610548.
3618216. 3

[HFK∗24] Hahlbohm F., Franke L., Kappel M., Castillo S., Stam-

minger M., Magnor M.: Inpc: Implicit neural point clouds for radiance
field rendering. arXiv preprint arXiv:2403.16862 (2024). 3

[HSM∗21] Hedman P., Srinivasan P. P., Mildenhall B., Barron J. T.,

Debevec P.: Baking neural radiance fields for real-time view synthesis.
ICCV (2021). doi:10.1109/ICCV48922.2021.00582. 3

[HYC∗24] Huang B., Yu Z., Chen A., Geiger A., Gao S.: 2D Gaussian
Splatting for Geometrically Accurate Radiance Fields. In SIGGRAPH 2024

Conference Papers (2024), ACM. doi:10.1145/3641519.3657428. 1,
2, 3, 4, 6, 7, 9, 10, 12, 13

[KKLD23] Kerbl B., Kopanas G., Leimkühler T., Drettakis G.: 3D
Gaussian Splatting for Real-Time Radiance Field Rendering. ACM TOG

42, 4 (July 2023). doi:10.1145/3592433. 1, 2, 3, 4, 6, 7, 8, 9, 12, 13

[KLR∗22] Kopanas G., Leimkühler T., Rainer G., Jambon C., Dret-

takis G.: Neural point catacaustics for novel-view synthesis of reflections.
ACM TOG (2022). doi:10.1145/3550454.3555497. 3

[KMK∗24] Kerbl B., Meuleman A., Kopanas G., Wimmer M., Lanvin

A., Drettakis G.: A hierarchical 3d gaussian representation for real-time
rendering of very large datasets. ACM Trans. Graph. 43, 4 (July 2024).
doi:10.1145/3658160. 3

[KPLD21] Kopanas G., Philip J., Leimkühler T., Drettakis G.: Point-
based neural rendering with per-view optimization. CGF (2021). doi:
10.1111/cgf.14339. 3

[KPZK17] Knapitsch A., Park J., Zhou Q.-Y., Koltun V.: Tanks and tem-
ples: Benchmarking large-scale scene reconstruction. ACM Transactions

on Graphics 36, 4 (2017). 6, 7, 9, 12, 13

[KRS∗24] Kheradmand S., Rebain D., Sharma G., Sun W., Tseng J.,

Isack H., Kar A., Tagliasacchi A., Yi K. M.: 3d gaussian splatting as
markov chain monte carlo. arXiv preprint arXiv:2404.09591 (2024). 3, 9

[KS23] Kulhanek J., Sattler T.: Tetra-nerf: Representing neural radiance
fields using tetrahedra. In 2023 IEEE/CVF International Conference on

Computer Vision (ICCV) (2023), pp. 18412–18423. doi:10.1109/
ICCV51070.2023.01692. 3

[LKLR24] Luiten J., Kopanas G., Leibe B., Ramanan D.: Dynamic 3d
gaussians: Tracking by persistent dynamic view synthesis. In 3DV (2024).
3

[LZ21] Lassner C., Zollhofer M.: Pulsar: Efficient sphere-based neural
rendering. In CVPR (2021). doi:10.1109/CVPR46437.2021.00149.
3, 6

[MB13] McGuire M., Bavoil L.: Weighted Blended Order-Independent
Transparency. Journal of Computer Graphics Techniques (JCGT) 2,
2 (December 2013), 122–141. URL: http://jcgt.org/published/
0002/02/09/. 4, 10

[MBDM97] Montrym J. S., Baum D. R., Dignam D. L., Migdal C. J.:
InfiniteReality: a real-time graphics system. In Computer Graphics (Proc.

ACM SIGGRAPH ’97) (1997), ACM Press, pp. 293–302. 6

[MCTB13] Maule M., Comba J., Torchelsen R., Bastos R.: Hybrid
Transparency. In Proceedings of the ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games (2013), pp. 103–118. 4, 6

[Mes07] Meshkin H.: Sort-independent alpha blending. GDC Talk (2007).
4

[MESK22] Müller T., Evans A., Schied C., Keller A.: Instant neural
graphics primitives with a multiresolution hash encoding. ACM TOG 41,
4 (jul 2022). doi:10.1145/3528223.3530127. 3

[MKKP18] Münstermann C., Krumpen S., Klein R., Peters C.:
Moment-based order-independent transparency. Proc. ACM Comput.

Graph. Interact. Tech. 1, 1 (2018). doi:10.1145/3203206. 4

[MKVC∗24] Mallick and Goel, Kerbl B., Vicente Carrasco F.,

Steinberger M., De La Torre F.: Taming 3dgs: High-quality radiance
fields with limited resources. In SIGGRAPH Asia 2024 Conference Papers

(2024). doi:10.1145/3680528.3687694. 7

[MLMP∗24] Moenne-Loccoz N., Mirzaei A., Perel O., de Lutio R.,

Esturo J. M., State G., Fidler S., Sharp N., Gojcic Z.: 3d gaussian ray
tracing: Fast tracing of particle scenes. arXiv preprint arXiv:2407.07090

(2024). 2, 3, 6, 7, 9

[MST∗20] Mildenhall B., Srinivasan P. P., Tancik M., Barron J. T.,

Ramamoorthi R., Ng R.: NeRF: Representing scenes as neural radiance
fields for view synthesis. In ECCV (2020). doi:10.1145/3503250. 2, 3

[NMR∗24] Niemeyer M., Manhardt F., Rakotosaona M.-J., Oechsle

M., Duckworth D., Gosula R., Tateno K., Bates J., Kaeser D.,

Tombari F.: Radsplat: Radiance field-informed gaussian splatting for
robust real-time rendering with 900+ fps. arXiv preprint arXiv:2403.13806

(2024). 3, 7

[PD84] Porter T., Duff T.: Compositing digital images. SIGGRAPH

Comput. Graph. 18, 3 (Jan. 1984), 253–259. doi:10.1145/964965.
808606. 4

[PZVBG00] Pfister H., Zwicker M., Van Baar J., Gross M.: Surfels:
Surface elements as rendering primitives. In Proceedings of the 27th

annual conference on Computer graphics and interactive techniques

(2000), pp. 335–342. 3

[RFS22] Rückert D., Franke L., Stamminger M.: Adop: Approximate
differentiable one-pixel point rendering. ACM TOG (2022). doi:10.
1145/3528223.3530122. 3

[RGS∗24] Reiser C., Garbin S., Srinivasan P. P., Verbin D., Szeliski

R., Mildenhall B., Barron J. T., Hedman P., Geiger A.: Binary opacity
grids: Capturing fine geometric detail for mesh-based view synthesis.
arXiv preprint arXiv:2402.12377 (2024). 3

[RL00] Rusinkiewicz S., Levoy M.: Qsplat: A multiresolution point
rendering system for large meshes. In Proceedings of the 27th annual

conference on Computer graphics and interactive techniques (2000),
pp. 343–352. 3

[RSP∗24] Radl L., Steiner M., Parger M., Weinrauch A., Kerbl B.,

Steinberger M.: StopThePop: Sorted Gaussian Splatting for View-
Consistent Real-time Rendering. ACM TOG 4, 43 (2024). 1, 2, 3, 5, 6, 7,
9, 12, 13

[RSV∗23] Reiser C., Szeliski R., Verbin D., Srinivasan P. P., Milden-

hall B., Geiger A., Barron J. T., Hedman P.: Merf: Memory-efficient
radiance fields for real-time view synthesis in unbounded scenes. SIG-

GRAPH (2023). doi:10.1145/3592426. 3

[SML11] Salvi M., Montgomery J., Lefohn A.: Adaptive transparency.
In Proceedings of the ACM SIGGRAPH Symposium on High Performance

Graphics (2011), pp. 119–126. 4

[SSC22] Sun C., Sun M., Chen H.: Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction. In CVPR (2022).
doi:10.1109/CVPR52688.2022.00538. 3

[SV14] Salvi M., Vaidyanathan K.: Multi-layer alpha blending. In
Proceedings of the 18th meeting of the ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games (2014), pp. 151–158. 4

[SWBG06] Sigg C., Weyrich T., Botsch M., Gross M.: Gpu-based
ray-casting of quadratic surfaces. In Proceedings of the 3rd Eurographics

/ IEEE VGTC Conference on Point-Based Graphics (Goslar, DEU, 2006),
SPBG’06, Eurographics Association, p. 59–65. 2, 3, 4, 5

[WHA∗07] Weyrich T., Heinzle S., Aila T., Fasnacht D. B., Oetiker

S., Botsch M., Flaig C., Mall S., Rohrer K., Felber N., Kaeslin H.,

Gross M.: A hardware architecture for surface splatting. ACM Trans.

Graph. 26, 3 (July 2007), 90–es. doi:10.1145/1276377.1276490. 2,
3, 4, 5

[WYF∗24] Wu G., Yi T., Fang J., Xie L., Zhang X., Wei W., Liu W.,

Tian Q., Wang X.: 4d gaussian splatting for real-time dynamic scene
rendering. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (2024), pp. 20310–20320. 3

https://doi.org/10.1145/3610548.3618216
https://doi.org/10.1145/3610548.3618216
https://doi.org/10.1109/ICCV48922.2021.00582
https://doi.org/10.1145/3641519.3657428
https://doi.org/10.1145/3592433
https://doi.org/10.1145/3550454.3555497
https://doi.org/10.1145/3658160
https://doi.org/10.1111/cgf.14339
https://doi.org/10.1111/cgf.14339
https://doi.org/10.1109/ICCV51070.2023.01692
https://doi.org/10.1109/ICCV51070.2023.01692
https://doi.org/10.1109/CVPR46437.2021.00149
http://jcgt.org/published/0002/02/09/
http://jcgt.org/published/0002/02/09/
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3203206
https://doi.org/10.1145/3680528.3687694
https://doi.org/10.1145/3503250
https://doi.org/10.1145/964965.808606
https://doi.org/10.1145/964965.808606
https://doi.org/10.1145/3528223.3530122
https://doi.org/10.1145/3528223.3530122
https://doi.org/10.1145/3592426
https://doi.org/10.1109/CVPR52688.2022.00538
https://doi.org/10.1145/1276377.1276490

12 of 13 Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency

[Wym16] Wyman C.: Exploring and expanding the continuum of OIT
algorithms. In High Performance Graphics (2016), pp. 1–11. 2, 4

[YCH∗24] Yu Z., Chen A., Huang B., Sattler T., Geiger A.: Mip-
splatting: Alias-free 3d gaussian splatting. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(2024), pp. 19447–19456. 3, 7

[YHR∗23] Yariv L., Hedman P., Reiser C., Verbin D., Srinivasan P. P.,

Szeliski R., Barron J. T., Mildenhall B.: Bakedsdf: Meshing neural
sdfs for real-time view synthesis. arXiv (2023). 3

[YLT∗21] Yu A., Li R., Tancik M., Li H., Ng R., Kanazawa A.: PlenOc-
trees for real-time rendering of neural radiance fields. In ICCV (2021).
doi:10.1109/ICCV48922.2021.00570. 3

[YSG24] Yu Z., Sattler T., Geiger A.: Gaussian opacity fields: Efficient
and compact surface reconstruction in unbounded scenes. arXiv preprint

arXiv:2404.10772 (2024). 2, 3, 6, 7, 12, 13

[ZPvBG01a] Zwicker M., Pfister H., van Baar J., Gross M.: Ewa
volume splatting. In Proceedings Visualization, 2001. VIS ’01. (2001),
pp. 29–538. doi:10.1109/VISUAL.2001.964490. 4

[ZPvBG01b] Zwicker M., Pfister H., van Baar J., Gross M.: Sur-
face splatting. In Proceedings of the 28th Annual Conference on Com-

puter Graphics and Interactive Techniques (New York, NY, USA, 2001),
SIGGRAPH ’01, Association for Computing Machinery, p. 371–378.
doi:10.1145/383259.383300. 3

Appendix A: Frame Rate Benchmarking

Following Duckworth et al. [DHR∗24], we compute frame rate by ren-

dering the test-set images of each scene 100 times and averaging over

the results. While the four compared baselines – 3DGS [KKLD23],

StopThePop [RSP∗24], 2DGS [HYC∗24], and GOF [YSG24] – are

all implemented on top of the original 3D Gaussian Splatting im-

plementation by Kerbl et al. [KKLD23], not all of them implement

optimized viewers for inference. As such, we intentionally avoid

basing our benchmarks on these real-time viewers and instead came

up with a way of removing most of the overhead caused by the

PyTorch-based framework used for training and quality metric com-

putation. Specifically, we apply a “baking” step before rendering,

which integrates all activation functions into the splat parameters

and ensures all spherical harmonics coefficients are stored in the

same buffer. As shown in Tab. 5, this has a significant influence

on the resulting frame rates of 3DGS and StopThePop, as they are

highly optimized for real-time rendering, but a negligible influence

for 2DGS and GOF. Seeing that the obtained numbers align with

what was shown in the supplemental video from 3DGS, we think

that this is a fair method for comparison, which does not rely on

method-specific optimizations for inference. Note that in our im-

plementation, the rendering is also controlled by a PyTorch-based

framework.

Mip-NeRF360 Tanks&Temples

Method Default Optimized Default Optimized

3DGS [KKLD23] 197.2 316.6 178.4 216.2

StopThePop [RSP∗24] 157.3 212.5 180.6 206.2

2DGS [HYC∗24] 122.2 134.9 94.9 95.8

GOF [YSG24] 16.2 16.7 12.2 12.3

Table 5: For fair comparison of frame rates, we “bake” activation

functions in splat parameters and ensure all spherical harmonics

coefficients are stored in the same buffer before rendering.

Appendix B: Per-Scene Metrics

We report per-scene SSIM, PSNR, and LPIPS for all evaluated

scenes from Mip-NeRF360 [BMV∗22] as well as Tanks and Tem-

ples [KPZK17] in Table 6 and Table 7 respectively.

https://doi.org/10.1109/ICCV48922.2021.00570
https://doi.org/10.1109/VISUAL.2001.964490
https://doi.org/10.1145/383259.383300

Hahlbohm et al. / Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency 13 of 13

SSIM↑ on Mip-NeRF360 [BMV∗22]

Method Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room Average

3DGS [KKLD23] 0.770 0.602 0.869 0.774 0.637 0.938 0.905 0.921 0.913 0.814

StopThePop [RSP∗24] 0.767 0.600 0.865 0.774 0.634 0.941 0.905 0.925 0.918 0.814

2DGS [HYC∗24] 0.732 0.570 0.841 0.756 0.615 0.931 0.891 0.915 0.906 0.795

GOF [YSG24] 0.787 0.634 0.868 0.793 0.640 0.937 0.901 0.916 0.911 0.821

Ours 0.784 0.629 0.867 0.792 0.637 0.941 0.902 0.923 0.920 0.822

Zip-NeRF [BMV∗23] 0.772 0.637 0.863 0.788 0.674 0.952 0.905 0.929 0.929 0.828

PSNR↑ on Mip-NeRF360 [BMV∗22]

Method Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room Average

3DGS [KKLD23] 25.25 21.52 27.41 26.55 22.49 31.98 28.69 30.32 30.63 27.20

StopThePop [RSP∗24] 25.18 21.51 27.24 26.63 22.51 32.00 28.53 31.09 30.98 27.30

2DGS [HYC∗24] 24.74 21.10 26.63 26.20 22.33 31.22 28.09 30.29 30.68 26.81

GOF [YSG24] 25.46 21.69 27.38 27.00 22.38 31.57 28.69 30.82 30.45 27.27

Ours 25.31 21.35 27.22 26.85 22.37 31.55 28.40 31.02 30.45 27.17

Zip-NeRF [BMV∗23] 25.85 22.33 28.22 27.35 23.95 34.79 29.12 32.36 33.04 28.56

LPIPS↓ on Mip-NeRF360 [BMV∗22]

Method Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room Average

3DGS [KKLD23] 0.229 0.366 0.118 0.244 0.367 0.253 0.262 0.158 0.289 0.254

StopThePop [RSP∗24] 0.232 0.365 0.121 0.244 0.365 0.248 0.254 0.154 0.280 0.252

2DGS [HYC∗24] 0.301 0.404 0.165 0.300 0.434 0.280 0.291 0.180 0.316 0.297

GOF [YSG24] 0.206 0.310 0.122 0.229 0.326 0.241 0.258 0.166 0.286 0.238

Ours 0.204 0.313 0.122 0.226 0.321 0.235 0.254 0.159 0.273 0.234

Zip-NeRF [BMV∗23] 0.228 0.309 0.127 0.236 0.281 0.196 0.223 0.134 0.238 0.219

Table 6: Per-scene image quality metrics for the Mip-NeRF360 dataset [BMV∗22] separated into outdoor and indoor scenes. Excluding

Zip-NeRF, the three best results are highlighted in green in descending order of saturation.

SSIM↑ on Tanks and Temples [KPZK17]

Method Family Francis Horse Lighthouse M60 Panther Playground Train Average

3DGS [KKLD23] 0.871 0.901 0.889 0.834 0.901 0.910 0.834 0.791 0.866

StopThePop [RSP∗24] 0.872 0.899 0.889 0.834 0.901 0.910 0.835 0.791 0.866

2DGS [HYC∗24] 0.860 0.884 0.883 0.820 0.887 0.902 0.806 0.768 0.851

GOF [YSG24] 0.873 0.898 0.891 0.825 0.901 0.909 0.840 0.793 0.866

Ours 0.872 0.896 0.893 0.832 0.901 0.909 0.839 0.786 0.866

Zip-NeRF [BMV∗23] 0.893 0.918 0.909 0.835 0.905 0.908 0.846 0.813 0.878

PSNR↑ on Tanks and Temples [KPZK17]

Method Family Francis Horse Lighthouse M60 Panther Playground Train Average

3DGS [KKLD23] 25.05 27.64 24.18 21.76 27.82 28.35 25.65 21.69 25.27

StopThePop [RSP∗24] 24.52 26.91 23.88 21.65 27.70 28.38 25.49 21.37 24.99

2DGS [HYC∗24] 24.72 26.29 23.86 21.49 26.89 27.94 24.29 20.89 24.55

GOF [YSG24] 25.05 26.85 24.30 21.17 27.84 28.47 25.09 21.28 25.01

Ours 24.19 25.32 23.84 21.96 27.82 28.40 24.69 20.78 24.62

Zip-NeRF [BMV∗23] 28.05 29.55 27.67 22.31 28.86 28.84 26.62 22.10 26.75

LPIPS↓ on Tanks and Temples [KPZK17]

Method Family Francis Horse Lighthouse M60 Panther Playground Train Average

3DGS [KKLD23] 0.236 0.344 0.239 0.291 0.244 0.241 0.291 0.320 0.276

StopThePop [RSP∗24] 0.228 0.338 0.235 0.288 0.237 0.236 0.285 0.313 0.270

2DGS [HYC∗24] 0.272 0.386 0.264 0.333 0.278 0.266 0.349 0.366 0.314

GOF [YSG24] 0.223 0.347 0.230 0.310 0.238 0.238 0.286 0.320 0.274

Ours 0.227 0.346 0.226 0.303 0.233 0.235 0.276 0.331 0.272

Zip-NeRF [BMV∗23] 0.172 0.270 0.181 0.281 0.212 0.217 0.251 0.279 0.233

Table 7: Per-scene image quality metrics for the Tanks and Temples dataset [KPZK17]. Excluding Zip-NeRF, the three best results are

highlighted in green in descending order of saturation.

