Example-Based Feature Painting on Textures « 183:1

Example-based feature painting on textures

SUPPLEMENTARY MATERIAL

ANDREI-TIMOTEI ARDELEAN, Friedrich-Alexander-Universitit Erlangen-Niirnberg, Germany
TIM WEYRICH, Friedrich-Alexander-Universitat Erlangen-Niirnberg, Germany

Table 2. Overview of each texture category used in our experiments. It
includes the number of anomaly/feature types (K), the number of images
without anomalies (Normal images), the number of images that contain
prominent features, and the total. The first 5 textures are from MVTecAD,
the other 10 are acquired by us.

Texture name K Normal images Feature images Total

Tile 5 33 84 117
Grid 5 21 57 78
Carpet 5 28 89 117
Wood 5 19 60 79
Leather 5 32 92 124
Pavement 2 0 9 9
Taboret 2 0 1 1
Shirt 1 0 1 1
Puzzle 1 0 1 1
Wall 2 0 5 5
Grass 2 0 15 20
Chair 1 0 3 3
Blueberries 2 3 12 15
Dots 3 1 6 7
SVBRDF 2 0 1

S1 Dataset examples

It is difficult to gauge the quality of the generated textures and the
painted features without having a fair understanding of how the
training data looks like. Therefore, we include in Fig. 13 and Fig. 14 a
set of images from each texture class, presenting all existing features.
Table 2 describes how many images and anomalies, or prominent
feature types, are contained in each dataset.

S2 Additional experiment on latent noise uniformization

While our noise-uniformization technique is designed for textures,
the concept readily extends to more generic image types, such as
panoramas. We demonstrate this by incorporating our improve-
ments in MultiDiffusion [Bar-Tal et al. 2023] to generate large-scale
images that are more realistic in terms of internal consistency. The
results of this experiment are presented in Fig. 15, comparing our
results with a vanilla MultiDiffusion based on Stable Diffusion 2.0.
To highlight the benefits of the introduced improvements, we use
a stride of 32 for the sliding window. It can be easily seen that our
results are more spatially consistent while still exhibiting a realistic
amount of variation. This has the added advantage that seams are
less noticeable, despite using a large stride. The seams are almost
completely eliminated when we additionally use our randomized
sliding windows scheme. That is, instead of using a fixed stride,
we offset each window by a random amount both horizontally and

vertically. We limit the offset to be less than half of the stride to
ensure full coverage of the latent map. The seams seen in the first
row of each group could also be resolved by running MultiDiffusion
with a stride of 1; however, this would incur a significantly longer
running time (18 minutes per image). Moreover, as seen in Fig. 16,
the high-level inconsistencies remain even in this case.

We want to stress that our latent noise uniformization is com-
plementary to the strategy used to generate large textures. For
example, a competitive approach to the noise averaging employed
by MultiDiffusion is the noise rolling algorithm introduced in Con-
trolMat [Vecchio et al. 2024]. In Fig. 16, we combine our noise uni-
formization with the noise rolling method for generating arbitrarily
large images and show that the results are significantly improved.
Our uniformization technique is most useful when there is a high
diversity of different images that would fit a given prompt, as it
makes it difficult to reconcile adjacent patches (e.g. beach landscape,
Fig 16). The noise rolling algorithm has the advantage that each
pixel is used just once for each timestep in the diffusion process
(equivalent to using a stride of 64). The algorithm is thus signif-
icantly faster compared to the full MultiDiffusion (shown in the
first row of each group in Fig. 16), with virtually no loss in quality.
Wang et al. [2024] also proposed a similar way to improve upon
MultiDiffusion in regards to the sampling of patches to be denoised.
We, however, do not combine our noise uniformization with this
method as their mechanism for sampling the random patches is not
described with sufficient detail.

S3 Additional details on the tileable texture synthesis of
arbitrary size.

Section 3.5 of the main paper presents our approach to generating
textures of arbitrary size using constant GPU memory. Crucially,
our noise-uniformization preprocessing ensures that the generated
textures are stationary. To avoid seams caused by the patch-based
denoising, we set the pixel overlap range to 32 (i.e., half the window
size). This means the number of evaluations of the diffusion model
is 4 times larger compared to an independent generation of the same
number of pixels. This constant factor aside, the complexity of tex-
ture synthesis is linear with respect to the images resolution, mean-
ing that generating large textures in this manner is time consuming
(e.g., 170 seconds for a 4096x4096 image). We approach this issue
by making our textures tileable; this is done by wrapping around
the sliding windows circularly during denoising. This strategy di-
rectly ensures tileability in the latent space in which the diffusion
model operates. In order to obtain tileable texture in RGB space,
we first circularly pad the output of the multi-diffusion. Then, the
enlarged map is decoded using the Stable Diffusion VAE [Rombach
et al. 2022], followed by a crop to the original (unpadded size). The
decoded output can then be easily tiled. This allows trading quality

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:2 « Timotei Ardelean & Tim Weyrich

Fig. 13. Overview of the image data in the MVTec AD textures.

for efficiency by synthesizing textures up to a certain resolution,
after which tiling is used to achieve the final size.

In Fig. 17 we present 6 such textures, that were generated at a
2048x2048 resolution and then tiled into 2x2 blocks, resulting in
seamless 4096x4096 images. Our noise-uniformization technique
reduces the impression of repeatability by making each tile more
stationary. This improvement especially visible for the grid texture
(second row of Fig. 17).

One can also note a difference in overall color and contrast be-
tween the images in the two columns. This appears as a consequence
of the noise averaging, specific to MultiDiffusion [Bar-Tal et al. 2023].
Averaging different diffusion paths reduces variance and changes
the final result for a specific window compared to what would have
been obtained using the noise in that window in isolation. Thanks to
our noise uniformization, the first moment of the noise varies much

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

less over different windows, which keeps the denoising trajectory
from diverting too much from the original path.

S4 Conditional generation on MVTec Textures

In Fig. 18 we show additional results generated with our method. The
results on MVTecAD textures shows that our method generalizes
to diverse shapes and multiple anomaly types per image.

S5 Uncurated set of generated images

In Fig. 19 we present a large set of images generated by our model,
showing each texture-class feature-type combination for 35 different
monochrome SVG icons from the internet (Flaticon.com).

Example-Based Feature Painting on Textures + 183:3

Fig. 14. Overview of our 9 textures, captured using a handheld phone camera.

S6 Additional high-resolution results

Our method lends itself to high-resolution generation and edit-
ing. In Figures 20, 21, we add results generated at high-resolution,
presenting various painted features. Fig. 22 includes additional high-
resolution editing results.

S7 Comparison Addition

We include in Fig. 23 a representative failure case of Diffusion Tex-
ture Painting [Hu et al. 2024], as referenced in the main paper.

S8 Comparison of different thresholding functions

In Section 3.1, we introduce our thresholding function, together
with the theoretical justification for combining a local and global
threshold. In Fig. 24 we present some representative results for
alternative thresholding schemes that we considered. That is, we
compare our approach to using local (per-image) quantiles, dataset-
level quantiles, and Otsu’s method.

S9 Timings

As presented in the main paper, our pipeline is trained in 3 stages:
anomaly detection, feature clustering, and diffusion-based synthesis.
The first stage resembles the detection part of BlindLCA [Ardelean
and Weyrich 2024b], which takes about 5 minutes. The second stage
performs the binarization, mines the positive and negative pairs
of connected components, and performs the contrastive learning;
the time is dominated by the last step, taking around 15 minutes.
The third stage is by far the most time-consuming: training the
diffusion model to convergence takes between 6 and 12 hours on an
A5000 NVIDIA GPU. This time, however, could be greatly reduced
by using a more fitting pre-training, with more textures compared
to the DTD dataset used in our experiments.

The training time is a drawback of our approach compared to
single-exemplar texture synthesis methods (e.g., Image Analogies
[Hertzmann et al. 2001], Guided Correspondence [Zhou et al. 2023]);
however, after training, our method can generate new images quickly,
enabling interactive texture authoring. During inference we per-
form 18 steps with the Heun solver, taking around 1 second for a

Table 3. Comparison of inference time.

Method Time (s) |
Image Analogies [Hertzmann et al. 2001] 1200
Guided Correspondence [Zhou et al. 2023] 224
Neural Style Transfer [Gatys et al. 2016] 75
Texture Reformer [Wang et al. 2022b] 0.34
Ours 0.98

512x512 image, as shown in Table 3. This Table, however, shows
the timing for generating a new texture with a given mask. Editing
an existing image requires an additional inversion step. Since we
use an Euler solver with 4 fixed-point iterations, the number of dif-
fusion model calls (NFE) is significantly larger. In the experiments
performed in the main paper we use 250 steps (1000 NFE), taking
about 15.5 seconds per image. After inversion, our noise-mixing
editing does another 250 NFE, taking around 4.5 seconds. The time
spent on encoding and decoding using the Stable Diffusion VAE
is negligible, which means the total time for editing is 20 seconds.
That being said, our interactive editing framework benefits from
the ability to dynamically choose the numbers of steps performed
by the diffusion model. Namely, the user can use a small number
of steps at the beginning of the editing sessions and only use the
full number of steps to synthesize the final result. Importantly, our
noise-inversion on real images performs well even with significantly
fewer steps, as seen in Fig. 25. Note that after 40 steps the returns in
quality are minimal and the inverted image converges to the VAE
representation. The mean absolute error (MAE) is dominated by the
loss of information during encoding-decoding. For the interactive
editing (as presented in the supplementary video) we only use 42
steps.

S10 Detailed numerical results

We include in Table 4 the detailed quantitative results of our method,
and compare them with the metrics obtained using BlindLCA [Arde-
lean and Weyrich 2024b]. We use macro averaging for the F1-score
to emphasize the importance of detecting all feature types. Note that

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

Fig. 15. Application of our noise uniformization for generic images synthesized using MultiDiffusion [Bar-Tal et al. 2023]. For each prompt the top image is
obtained using pure white noise, the second image uses our harmonized noise, the third image additionally uses randomized sliding windows.

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

Example-Based Feature Painting on Textures + 183:5

Fig. 16. Application of our noise uniformization in conjunction with noise rolling [Vecchio et al. 2024]. For each image triplet, the first row is obtained from
white noise using MultiDiffusion with stride 1, the second row represents image generation using noise rolling from white noise, the third row uses
noise rolling on top of our noise uniformization.

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:6 « Timotei Ardelean & Tim Weyrich

Fig. 17. Visualization of the generated tiled textures starting from white noise (left column) and our noise-uniformization method (right column). The
multi-diffusion synthesizes tileable textures of 20482048, which are then tiled to form 4096x4096 images.

Table 4. Detailed quantitative results and comparison.

Texture Ours BlindLCA
Acc.T ToUT F1T Acc.T IoUT F17
Tile 0.97 0.70 0.80 0.96 0.54 0.67

Wood 0.96 0.48 0.56 0.97 0.41 0.50
Leather 099 0.47 0.57 0.99 0.39 0.50
Carpet 099 042 0.53 0.99 0.39 0.49
Grid 098 030 0.38 0.53 0.17 0.25

this experiment uses a setting favorable to BlindLCA; that is, we
excluded images that contain more than a single anomaly type per
image. Nonetheless, our approach consistently yields better metrics.

S11 Discussion on the choice of generative model

Our feature painting framework is composed of several compo-
nents that work together to enable the authoring and editing of

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

Table 5. Quantitative comparison of texture synthesis with different dif-
fusion models. “+ DTD” denotes that the model was pretrained using the
DTD [Cimpoi et al. 2014] textures dataset.

Model (FID |) Tile Carpet Grid Wood Leather
SD + ControlNet 95.76 166.52 162.45 81.14 102.86

EDM2 41.60 132.12 125.70 38.67 126.05
EDM2 + DTD 46.23 88.31 92.69 3424 103.33
EDM + DTD 50.04 57.14 81.82 6829 105.88

textures with prominent features, which are learned from a small
number of images. The generative model is the component that
links the anomaly segmentation to the various desired capabilities
of the system (see points 2-4 in the introduction). We choose to
pose the generation as an image-to-image translation task (spatial
labels to texture) using a diffusion model, and combine it with our
noise-mixing and noise-uniformization to facilitate editing, feature

Input labels

Synthesis

Example-Based Feature Painting on Textures + 183:7

Fig. 18. Additional results on feature-conditioned texture generation by our model.

Table 6. Quantitative comparison of texture feature painting using differ-
ent diffusion models; EDM and EDM2 were pretrained on DTD [Cimpoi
et al. 2014]. The models are evaluated by the accuracy of a image-to-class
segmentation network trained with ground-truth labels.

Model (Acc 1) Tile Carpet Grid Wood Leather
SD + ControlNet 92.34 48.99 41.22 95.72 98.27
EDM2 94.40 93.86 90.58 9549 86.82
EDM 96.63 97.94 91.66 96.17 97.84

Table 7. Timing of different diffusion models

Method Throughput (img/s) T Latency (ms) |
SD + ControlNet 0.8 2720
EDM2 14 2430
EDM 1.3 982

transfer, and large texture generation. Alternatively, the generative
task could be formulated as inpainting, to naturally support editing.
While arbitrary-size texture generation could in this case be formu-
lated as out-painting, it is not clear how the other capabilities could
be obtained. For example, it is not trivial to enable feature transfer,
or to ensure that the painted feature is consistent with the initial
texture (see Fig. 12 and Fig. 10).

Another possible approach is to use an autoencoder or a VAE
and encode the different types of features in latent space. A tex-
ture synthesis method that leverages this idea is TextureMixer [Yu
et al. 2019]. This approach could potentially be used within our
framework by using the pixel-level anomaly segmentation masks to
extract the rare features in a format compatible with TextureMixer’s
training process. Nevertheless, it is unclear to what extent such
method can adapt to thin structures (such as cracks) or how it can
be extended to support feature transfer.

Other generative approaches, such as autoregressive models or
flow-matching could be similarly considered. In general, however,
we consider it out of the scope of this paper to incorporate all these
methods in our framework to evaluate their performance on the
various capabilities. That being said, our choice of diffusion model
is made without loss of generality within that category (spatially-
conditioned diffusion models). Our system uses EDM [Karras et al.
2022] as the backbone for texture synthesis and editing; nonetheless,
the proposed noise-mixing and noise-uniformization algorithms can
be applied using virtually any diffusion model. In our experiments,
we use EDM because we find it to strike a good balance between
image quality and speed. In the following, we provide a quantitative
comparison between EDM and two alternative diffusion models,
namely Stable Diffusion (SD) [Rombach et al. 2022] and EDM2 [Kar-
ras et al. 2024]. In order to evaluate the image quality for a certain
texture, we generate 100 images of the normal class and take 64
patches of size 128128 from every image. In the same manner, we
also extract patches from the real images without anomalies, which
were not seen during training. Finally, the distribution of the gen-
erated and real patches are compared using the Fréchet Inception
Distance (FID) [Heusel et al. 2017]. We evaluate the three different
models and in Table 5. It can be seen that pretraining the models
on the DTD [Cimpoi et al. 2014] dataset improves synthesis qual-
ity; however, rather surprisingly, Stable Diffusion performs worse
despite its large scale pretraining. Note that we have experimented
with both full-model fine-tuning and ControlNet [Zhang et al. 2023],
and we observed superior performance with the later. We further
evaluate the models ability to generate realistic prominent features
on the textures in Table 6. As the number of anomalous patches
in MVTec is very small, and all anomalous images have been used
for training the diffusion models, it is unfeasible to use FID in this
case. Therefore, we evaluate the models based on the ability of a
segmentation network to correctly classify the generated features.
We train a CNN on the MVTec ground-truth labels and generate a

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

Timotei Ardelean & Tim Weyrich

183:8

for which we generate images

5

Fig. 19. Large set of uncurated images generated by our model based on icons from Flaticon.com. There are 7x5 different icons

with 5 anomalies for 5 different textures,

for a total of 875 images.

Article 183. Publication date: December 2025.

ACM Trans. Graph., Vol. 44, No. 6

Example-Based Feature Painting on Textures + 183:9

Fig. 21. High-resolution conditional generation examples. Note that the puzzle model was trained from a single image (see Fig. 14)

set of semantic masks as test data. The diffusion models are condi- segmentations; a higher accuracy indicates that the features better
tioned on these masks to generate a set of 256 images, which are reflect the training data (real MV Tec anomalies).
then segmented with the CNN. Table 6 reports the accuracy of these The throughput and latency of the three methods are compared in

Table 7. SD has the highest computation time of the three methods.

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:10 « Timotei Ardelean & Tim Weyrich

Fig. 22. High-resolution (4096x4096) editing examples. Please zoom in for full resolution.

While the throughput of EDM2 is similar to EDM, the latency is
significantly higher, despite using the smallest (XS) variant of EDM2.
It can be reduced to 1166 milliseconds by using the same model
for guidance, which allows computing the conditional and non-
conditional noise directions in parallel. Overall, these experiments
suggest that EDM is a good choice for our use-case, considering the
high-quality synthesis with a low latency. Finally, we emphasize

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

that even though we show that our choice of diffusion model is
sound, and that good results can be obtained with a relatively small
model with very little pretraining, we do not claim to have found
the best possible model for this part of the pipeline, as this is not
the scope of our work.

B

Source Mask No dilation rg; =27 rdil =52 rdit =77

Fig. 23. Failure case for Diffusion Texture Painting [Hu et al. 2024]. The
results are generated with a progressively dilated mask. Only at the largest
size (dilated by 77 pixels), the feature is actually painted.

Image Ano. scores Local 95% Dataset 95% Otsu

Our Eq. (1)

Fig. 24. Comparing the binarization of anomaly scores using different
thresholding functions.

S12 Implementation Details

Several implementation details have been omitted for brevity in the
main text. We expand here the explanation of various steps and the
hyperparameters used.

S$12.1 Anomaly detection

In the first stage of the pipeline, we apply FCA to the residuals of
the VAE reconstruction. We use a similar preprocessing to Ardelean
and Weyrich [2024b]: resize the images to 512x512, use a Wide
ResNet-50 [Zagoruyko and Komodakis 2016], and train the VAE
for 10k iterations. After subtracting the original features from the
reconstruction we use FCA with a patch size of 7x7, 0, = 3, and
os = 1.

S$12.2 Semantic feature segmentation

In order to enable an efficient training of the segmentation network
through contrastive learning, we first build a database of positive
and negative pairs. As described in section 3.1, we first binarize the

Example-Based Feature Painting on Textures « 183:11

fun
o

—— lInversion Time
14 Edit Time

12

10

Time (s)

10 30 50 100 150 200 250
Number of Steps

—— Inversion error
oo7s | VAE reconstruction error

0.065

MAE

0.055

0.045

10 30 50 100 150 200 250
Number of Steps

Fig. 25. Timing and errors for diffusion inversion.

E

Fig. 26. Histograms of sampled negatives from each anomaly class, used
for contrastive learning: uniformly sampled (left) and using our stratified
sampling (right). A disproportionate number of normal samples hinders the
proper separation of the anomaly classes.

anomaly maps from the previous step using an adaptive threshold.
Afterward, we form groups of prominent features by finding the
connected components. To reduce some of the noise that arises from
binarization, we perform a small erosion (2x2) and then eliminate
objects smaller than 12 pixels. For each region, we then compute a
neural descriptor by averaging the ResNet features from the pixels
inside the mask. We employ a weighted average using the softmax
of the scores predicted by FCA, similarly to Sohn et al. [2023]. The

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:12 + Timotei Ardelean & Tim Weyrich

descriptors are used to compute pair-wise distances between all fea-
ture groups. To sample the positive pairs we simply take the closest
p =10 feature groups in terms of distance. Our stratified sampling
of the negative pairs is more involved: the closest 50% groups are
first discarded as potential positives; then, the remaining descriptors
are clustered using k-means to obtain coarse group categories. We
then select a number of n negatives in a stratified manner from
this pool, where n is calculated as the expected number of groups.
That is, the total number of groups minus the largest cluster, which
contains normal features. Since n is generally smaller than 50% of
the original number of groups, the negatives are distributed more
uniformly across the different types of prominent features.

Our segmentation network takes as input the ResNet features
and computes task-aligned descriptors through contrastive learning.
The network consists of only 3 convolutional layers with kernel
sizes: 3x3, 3x3, 1x1, LayerNorm normalization, and GeLU activa-
tions. During training, we use an additional 2-layer MLP head that
is not used for clustering, as it is customary in self-supervised learn-
ing [Chen et al. 2021b; Grill et al. 2020]. We train the network for 10K
iterations and then obtain per-pixel descriptors for all images. Fi-
nally, these descriptors are clustered independently using k-means;
the number of classes (prominent feature types) is assumed to be
known by the user. Generally, we believe the user would have a
reasonable understanding of the features present in the dataset and
choose the granularity of the clustering according to their use-case.
Alternatively, the user could simply use a clustering method that
automatically detects the number of classes, such as DBSCAN.

$12.3 Synthesis

To support conditional synthesis, we adapt the diffusion architecture
used by EDM to incorporate spatial label maps. Firstly, we lift the
noise embedding to a HxWxC tensor instead of a C-dimensional
vector. Then, we compute label embeddings using two convolutional
layers, and we add them to the noise embeddings. Finally, we use
another 1x1 convolution before propagating this spatial embedding
to all the U-Net blocks. This minimal modification of the architecture
effectively enables the control of the model through the label mask.

We pretrain the model on the DTD dataset for 750K iterations,
taking around 12 hours. Then, we separately fine-tune the model
for each texture for another 750K iterations. The diffusion is per-
formed in the latent space of SD, making it more efficient to generate
high-resolution images. The only exception is the SVBRDF synthe-
sis experiment, which performs the diffusion directly in the space
of material maps. All models are trained at a resolution of 64x64.
We use Pytorch’s RandomResizedCrop augmentation, along with
random horizontal and vertical flips, and a slight color jitter.

For interactive editing, we developed a Blender script that lever-
ages the native tool for painting masks on textures. We process the
masked image to extract the desired edit and take a bounding patch
of at least 442x442 around the masked region. Our noise-mixing
algorithm is then applied with the Euler solver for 42 steps. The
average edit latency is 1.5 seconds, which enables interactive asset
modifications (as seen in the video attached to this supplementary
material).

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

S$12.3.1 Noise uniformization. Our noise uniformization algorithm
specifies a way to make a noise map w more consistent with a
different noise tensor z, which dictates the style of the instance
(overall color, contrast, pattern density, etc). We achieve this by
making the noise map follow the same low frequency distribution,
as described in the main paper:

w’ :=w — blur(w) + upscale(shuffle(downscale(blur(z))).
For blurring, we use a Lanczos filter with a cutoff frequency f, = 0.1,
and we downsample the filtered noise to a resolution of 32 x 32. For
the supplementary experiments, based on StableDiffusion (Fig. 15),
we use the same parameters, except that we only perform the down-
sampling and shuffling along the columns. This is because the gen-
erated images resemble panoramas, which only have a stationary
nature along the width of the image. To create a large uniform noise
tensor, we first generate white noise and then divide the map into
equally-sized non-overlapping patches. The first patch conveys the
style (z). All other patches (w) are modified using the algorithm
described above to follow this prototype; finally, the patches are
rearranged to form the large noise map, which is the input for the
diffusion model.

S$12.3.2 SVBRDF. The main difference between the synthesis of
material maps compared to RGB images is that we do not use a latent
model for SVBRDFs. We train the model with 64x64 patches from
the input material and do not use color jitter for this experiment.
Since there is only one SVBRDF as input, we did not use contrastive
learning for the semantic segmentation. Instead, as the irregularities
are easily noticeable in either the albedo or the roughness maps, we
computed embeddings using a random of set of 5x5 filters applied on
the pixels’ features. The resulting descriptors were directly clustered
using k-means.

S$12.4 Video

The video attached to this supplementary material contains an in-
teractive editing session in Blender. Here, we make use of the brush
tool from Blender, which allows the user to paint on a 3D mesh,
while enabling programmatic access to the updated underlying UV-
mapped 2D texture. We use the mask-painted texture to extract
the semantic conditioning and then apply our trained method on
the texture patch which is being edited. To improve the latency,
we preload into GPU memory the weights of the model and the
diffusion trajectory needed for our noise-mixing. This is done in a
background thread when a certain object is selected for editing, so
that a single set of weights must be stored in memory at a specific
time. All textures in the scene have a resolution of 2048x2048, and
they have been generated using our method except for the teapot,
for which we use an arbitrary image to showcase our feature trans-
fer capabilities. The blemishes are transferred from the MVTec tile
texture. Note that we only apply our method to the base color of
the materials, leaving the other material maps unchanged.

§$12.5 Code Release
The code is available at: github.com/TArdelean/FeaturePainting.

https://github.com/TArdelean/FeaturePainting

	Abstract
	1 Introduction
	2 Related Work
	2.1 Example-based feature synthesis
	2.2 Anomaly Localization and Classification
	2.3 Weathering synthesis

	3 Method
	3.1 Prominent feature scoring
	3.2 Feature type clustering
	3.3 Guided texture generation
	3.4 Editing
	3.5 Stationary infinite texture generation

	4 Experiments
	4.1 Editing results
	4.2 Synthesizing materials

	5 Ablations
	6 Limitations
	7 Conclusion
	Acknowledgments
	References
	S1 Dataset examples
	S2 Additional experiment on latent noise uniformization
	S3 Additional details on the tileable texture synthesis of arbitrary size.
	S4 Conditional generation on MVTec Textures
	S5 Uncurated set of generated images
	S6 Additional high-resolution results
	S7 Comparison Addition
	S8 Comparison of different thresholding functions
	S9 Timings
	S10 Detailed numerical results
	S11 Discussion on the choice of generative model
	S12 Implementation Details
	S12.1 Anomaly detection
	S12.2 Semantic feature segmentation
	S12.3 Synthesis
	S12.4 Video
	S12.5 Code Release

