
Example-Based Feature Painting on Textures • 183:1

Example-based feature painting on textures
SUPPLEMENTARY MATERIAL

ANDREI-TIMOTEI ARDELEAN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
TIM WEYRICH, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Table 2. Overview of each texture category used in our experiments. It
includes the number of anomaly/feature types (K), the number of images
without anomalies (Normal images), the number of images that contain
prominent features, and the total. The first 5 textures are from MVTecAD,
the other 10 are acquired by us.

Texture name K Normal images Feature images Total

Tile 5 33 84 117
Grid 5 21 57 78
Carpet 5 28 89 117
Wood 5 19 60 79
Leather 5 32 92 124

Pavement 2 0 9 9
Taboret 2 0 1 1
Shirt 1 0 1 1
Puzzle 1 0 1 1
Wall 2 0 5 5
Grass 2 0 15 20
Chair 1 0 3 3
Blueberries 2 3 12 15
Dots 3 1 6 7
SVBRDF 2 0 1 1

S1 Dataset examples
It is di!cult to gauge the quality of the generated textures and the
painted features without having a fair understanding of how the
training data looks like. Therefore, we include in Fig. 13 and Fig. 14 a
set of images from each texture class, presenting all existing features.
Table 2 describes how many images and anomalies, or prominent
feature types, are contained in each dataset.

S2 Additional experiment on latent noise uniformization
While our noise-uniformization technique is designed for textures,
the concept readily extends to more generic image types, such as
panoramas. We demonstrate this by incorporating our improve-
ments in MultiDi"usion [Bar-Tal et al. 2023] to generate large-scale
images that are more realistic in terms of internal consistency. The
results of this experiment are presented in Fig. 15, comparing our
results with a vanilla MultiDi"usion based on Stable Di"usion 2.0.
To highlight the bene#ts of the introduced improvements, we use
a stride of 32 for the sliding window. It can be easily seen that our
results are more spatially consistent while still exhibiting a realistic
amount of variation. This has the added advantage that seams are
less noticeable, despite using a large stride. The seams are almost
completely eliminated when we additionally use our randomized
sliding windows scheme. That is, instead of using a #xed stride,
we o"set each window by a random amount both horizontally and

vertically. We limit the o"set to be less than half of the stride to
ensure full coverage of the latent map. The seams seen in the #rst
row of each group could also be resolved by running MultiDi"usion
with a stride of 1; however, this would incur a signi#cantly longer
running time (18 minutes per image). Moreover, as seen in Fig. 16,
the high-level inconsistencies remain even in this case.
We want to stress that our latent noise uniformization is com-

plementary to the strategy used to generate large textures. For
example, a competitive approach to the noise averaging employed
by MultiDi"usion is the noise rolling algorithm introduced in Con-
trolMat [Vecchio et al. 2024]. In Fig. 16, we combine our noise uni-
formization with the noise rolling method for generating arbitrarily
large images and show that the results are signi#cantly improved.
Our uniformization technique is most useful when there is a high
diversity of di"erent images that would #t a given prompt, as it
makes it di!cult to reconcile adjacent patches (e.g. beach landscape,
Fig 16). The noise rolling algorithm has the advantage that each
pixel is used just once for each timestep in the di"usion process
(equivalent to using a stride of 64). The algorithm is thus signif-
icantly faster compared to the full MultiDi"usion (shown in the
#rst row of each group in Fig. 16), with virtually no loss in quality.
Wang et al. [2024] also proposed a similar way to improve upon
MultiDi"usion in regards to the sampling of patches to be denoised.
We, however, do not combine our noise uniformization with this
method as their mechanism for sampling the random patches is not
described with su!cient detail.

S3 Additional details on the tileable texture synthesis of
arbitrary size.

Section 3.5 of the main paper presents our approach to generating
textures of arbitrary size using constant GPU memory. Crucially,
our noise-uniformization preprocessing ensures that the generated
textures are stationary. To avoid seams caused by the patch-based
denoising, we set the pixel overlap range to 32 (i.e., half the window
size). This means the number of evaluations of the di"usion model
is 4 times larger compared to an independent generation of the same
number of pixels. This constant factor aside, the complexity of tex-
ture synthesis is linear with respect to the images resolution, mean-
ing that generating large textures in this manner is time consuming
(e.g., 170 seconds for a 4096×4096 image). We approach this issue
by making our textures tileable; this is done by wrapping around
the sliding windows circularly during denoising. This strategy di-
rectly ensures tileability in the latent space in which the di"usion
model operates. In order to obtain tileable texture in RGB space,
we #rst circularly pad the output of the multi-di"usion. Then, the
enlarged map is decoded using the Stable Di"usion VAE [Rombach
et al. 2022], followed by a crop to the original (unpadded size). The
decoded output can then be easily tiled. This allows trading quality

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:2 • Timotei Ardelean & Tim Weyrich

Fig. 13. Overview of the image data in the MVTec AD textures.

for e!ciency by synthesizing textures up to a certain resolution,
after which tiling is used to achieve the #nal size.
In Fig. 17 we present 6 such textures, that were generated at a

2048×2048 resolution and then tiled into 2×2 blocks, resulting in
seamless 4096×4096 images. Our noise-uniformization technique
reduces the impression of repeatability by making each tile more
stationary. This improvement especially visible for the grid texture
(second row of Fig. 17).

One can also note a di"erence in overall color and contrast be-
tween the images in the two columns. This appears as a consequence
of the noise averaging, speci#c toMultiDi"usion [Bar-Tal et al. 2023].
Averaging di"erent di"usion paths reduces variance and changes
the #nal result for a speci#c window compared to what would have
been obtained using the noise in that window in isolation. Thanks to
our noise uniformization, the #rst moment of the noise varies much

less over di"erent windows, which keeps the denoising trajectory
from diverting too much from the original path.

S4 Conditional generation on MVTec Textures
In Fig. 18 we show additional results generatedwith ourmethod. The
results on MVTecAD textures shows that our method generalizes
to diverse shapes and multiple anomaly types per image.

S5 Uncurated set of generated images
In Fig. 19 we present a large set of images generated by our model,
showing each texture-class feature-type combination for 35 di"erent
monochrome SVG icons from the internet (Flaticon.com).

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

Example-Based Feature Painting on Textures • 183:3

Fig. 14. Overview of our 9 textures, captured using a handheld phone camera.

S6 Additional high-resolution results
Our method lends itself to high-resolution generation and edit-
ing. In Figures 20, 21, we add results generated at high-resolution,
presenting various painted features. Fig. 22 includes additional high-
resolution editing results.

S7 Comparison Addition
We include in Fig. 23 a representative failure case of Di"usion Tex-
ture Painting [Hu et al. 2024], as referenced in the main paper.

S8 Comparison of di!erent thresholding functions
In Section 3.1, we introduce our thresholding function, together
with the theoretical justi#cation for combining a local and global
threshold. In Fig. 24 we present some representative results for
alternative thresholding schemes that we considered. That is, we
compare our approach to using local (per-image) quantiles, dataset-
level quantiles, and Otsu’s method.

S9 Timings
As presented in the main paper, our pipeline is trained in 3 stages:
anomaly detection, feature clustering, and di"usion-based synthesis.
The #rst stage resembles the detection part of BlindLCA [Ardelean
and Weyrich 2024b], which takes about 5 minutes. The second stage
performs the binarization, mines the positive and negative pairs
of connected components, and performs the contrastive learning;
the time is dominated by the last step, taking around 15 minutes.
The third stage is by far the most time-consuming: training the
di"usion model to convergence takes between 6 and 12 hours on an
A5000 NVIDIA GPU. This time, however, could be greatly reduced
by using a more #tting pre-training, with more textures compared
to the DTD dataset used in our experiments.
The training time is a drawback of our approach compared to

single-exemplar texture synthesis methods (e.g., Image Analogies
[Hertzmann et al. 2001], Guided Correspondence [Zhou et al. 2023]);
however, after training, ourmethod can generate new images quickly,
enabling interactive texture authoring. During inference we per-
form 18 steps with the Heun solver, taking around 1 second for a

Table 3. Comparison of inference time.

Method Time (s) →
Image Analogies [Hertzmann et al. 2001] 1200
Guided Correspondence [Zhou et al. 2023] 224
Neural Style Transfer [Gatys et al. 2016] 75
Texture Reformer [Wang et al. 2022b] 0.34
Ours 0.98

512×512 image, as shown in Table 3. This Table, however, shows
the timing for generating a new texture with a given mask. Editing
an existing image requires an additional inversion step. Since we
use an Euler solver with 4 #xed-point iterations, the number of dif-
fusion model calls (NFE) is signi#cantly larger. In the experiments
performed in the main paper we use 250 steps (1000 NFE), taking
about 15.5 seconds per image. After inversion, our noise-mixing
editing does another 250 NFE, taking around 4.5 seconds. The time
spent on encoding and decoding using the Stable Di"usion VAE
is negligible, which means the total time for editing is 20 seconds.
That being said, our interactive editing framework bene#ts from
the ability to dynamically choose the numbers of steps performed
by the di"usion model. Namely, the user can use a small number
of steps at the beginning of the editing sessions and only use the
full number of steps to synthesize the #nal result. Importantly, our
noise-inversion on real images performs well even with signi#cantly
fewer steps, as seen in Fig. 25. Note that after 40 steps the returns in
quality are minimal and the inverted image converges to the VAE
representation. The mean absolute error (MAE) is dominated by the
loss of information during encoding-decoding. For the interactive
editing (as presented in the supplementary video) we only use 42
steps.

S10 Detailed numerical results
We include in Table 4 the detailed quantitative results of our method,
and compare them with the metrics obtained using BlindLCA [Arde-
lean and Weyrich 2024b]. We use macro averaging for the F1-score
to emphasize the importance of detecting all feature types. Note that

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:4 • Timotei Ardelean & Tim Weyrich

Fig. 15. Application of our noise uniformization for generic images synthesized using MultiDi!usion [Bar-Tal et al. 2023]. For each prompt the top image is
obtained using pure white noise, the second image uses our harmonized noise, the third image additionally uses randomized sliding windows.

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

Example-Based Feature Painting on Textures • 183:5

Fig. 16. Application of our noise uniformization in conjunction with noise rolling [Vecchio et al. 2024]. For each image triplet, the first row is obtained from
white noise using MultiDi!usion with stride 1, the second row represents image generation using noise rolling from white noise, the third row uses
noise rolling on top of our noise uniformization.

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:6 • Timotei Ardelean & Tim Weyrich

Fig. 17. Visualization of the generated tiled textures starting from white noise (le" column) and our noise-uniformization method (right column). The
multi-di!usion synthesizes tileable textures of 2048×2048, which are then tiled to form 4096×4096 images.

Table 4. Detailed quantitative results and comparison.

Texture Ours BlindLCA
Acc. ↑ IoU ↑ F1 ↑ Acc. ↑ IoU ↑ F1 ↑

Tile 0.97 0.70 0.80 0.96 0.54 0.67
Wood 0.96 0.48 0.56 0.97 0.41 0.50
Leather 0.99 0.47 0.57 0.99 0.39 0.50
Carpet 0.99 0.42 0.53 0.99 0.39 0.49
Grid 0.98 0.30 0.38 0.53 0.17 0.25

this experiment uses a setting favorable to BlindLCA; that is, we
excluded images that contain more than a single anomaly type per
image. Nonetheless, our approach consistently yields better metrics.

S11 Discussion on the choice of generative model
Our feature painting framework is composed of several compo-
nents that work together to enable the authoring and editing of

Table 5. #antitative comparison of texture synthesis with di!erent dif-
fusion models. “+ DTD” denotes that the model was pretrained using the
DTD [Cimpoi et al. 2014] textures dataset.

Model (FID →) Tile Carpet Grid Wood Leather

SD + ControlNet 95.76 166.52 162.45 81.14 102.86
EDM2 41.60 132.12 125.70 38.67 126.05
EDM2 + DTD 46.23 88.31 92.69 34.24 103.33
EDM + DTD 50.04 57.14 81.82 68.29 105.88

textures with prominent features, which are learned from a small
number of images. The generative model is the component that
links the anomaly segmentation to the various desired capabilities
of the system (see points 2-4 in the introduction). We choose to
pose the generation as an image-to-image translation task (spatial
labels to texture) using a di"usion model, and combine it with our
noise-mixing and noise-uniformization to facilitate editing, feature

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

Example-Based Feature Painting on Textures • 183:7
In
pu

tl
ab
el
s

Sy
nt
he

si
s

Fig. 18. Additional results on feature-conditioned texture generation by our model.

Table 6. #antitative comparison of texture feature painting using di!er-
ent di!usion models; EDM and EDM2 were pretrained on DTD [Cimpoi
et al. 2014]. The models are evaluated by the accuracy of a image-to-class
segmentation network trained with ground-truth labels.

Model (Acc ↑) Tile Carpet Grid Wood Leather

SD + ControlNet 92.34 48.99 41.22 95.72 98.27
EDM2 94.40 93.86 90.58 95.49 86.82
EDM 96.63 97.94 91.66 96.17 97.84

Table 7. Timing of di!erent di!usion models

Method Throughput (img/s) ↑ Latency (ms) →
SD + ControlNet 0.8 2720
EDM2 1.4 2430
EDM 1.3 982

transfer, and large texture generation. Alternatively, the generative
task could be formulated as inpainting, to naturally support editing.
While arbitrary-size texture generation could in this case be formu-
lated as out-painting, it is not clear how the other capabilities could
be obtained. For example, it is not trivial to enable feature transfer,
or to ensure that the painted feature is consistent with the initial
texture (see Fig. 12 and Fig. 10).
Another possible approach is to use an autoencoder or a VAE

and encode the di"erent types of features in latent space. A tex-
ture synthesis method that leverages this idea is TextureMixer [Yu
et al. 2019]. This approach could potentially be used within our
framework by using the pixel-level anomaly segmentation masks to
extract the rare features in a format compatible with TextureMixer’s
training process. Nevertheless, it is unclear to what extent such
method can adapt to thin structures (such as cracks) or how it can
be extended to support feature transfer.

Other generative approaches, such as autoregressive models or
$ow-matching could be similarly considered. In general, however,
we consider it out of the scope of this paper to incorporate all these
methods in our framework to evaluate their performance on the
various capabilities. That being said, our choice of di"usion model
is made without loss of generality within that category (spatially-
conditioned di"usion models). Our system uses EDM [Karras et al.
2022] as the backbone for texture synthesis and editing; nonetheless,
the proposed noise-mixing and noise-uniformization algorithms can
be applied using virtually any di"usion model. In our experiments,
we use EDM because we #nd it to strike a good balance between
image quality and speed. In the following, we provide a quantitative
comparison between EDM and two alternative di"usion models,
namely Stable Di"usion (SD) [Rombach et al. 2022] and EDM2 [Kar-
ras et al. 2024]. In order to evaluate the image quality for a certain
texture, we generate 100 images of the normal class and take 64
patches of size 128×128 from every image. In the same manner, we
also extract patches from the real images without anomalies, which
were not seen during training. Finally, the distribution of the gen-
erated and real patches are compared using the Fréchet Inception
Distance (FID) [Heusel et al. 2017]. We evaluate the three di"erent
models and in Table 5. It can be seen that pretraining the models
on the DTD [Cimpoi et al. 2014] dataset improves synthesis qual-
ity; however, rather surprisingly, Stable Di"usion performs worse
despite its large scale pretraining. Note that we have experimented
with both full-model #ne-tuning and ControlNet [Zhang et al. 2023],
and we observed superior performance with the later. We further
evaluate the models ability to generate realistic prominent features
on the textures in Table 6. As the number of anomalous patches
in MVTec is very small, and all anomalous images have been used
for training the di"usion models, it is unfeasible to use FID in this
case. Therefore, we evaluate the models based on the ability of a
segmentation network to correctly classify the generated features.
We train a CNN on the MVTec ground-truth labels and generate a

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:8 • Timotei Ardelean & Tim Weyrich

Fig. 19. Large set of uncurated images generated by our model based on icons from Flaticon.com. There are 7×5 di!erent icons, for which we generate images
with 5 anomalies for 5 di!erent textures, for a total of 875 images.

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

Example-Based Feature Painting on Textures • 183:9

Fig. 20. High-resolution (2048×4096) conditional generation example.

Fig. 21. High-resolution conditional generation examples. Note that the puzzle model was trained from a single image (see Fig. 14)

set of semantic masks as test data. The di"usion models are condi-
tioned on these masks to generate a set of 256 images, which are
then segmented with the CNN. Table 6 reports the accuracy of these

segmentations; a higher accuracy indicates that the features better
re$ect the training data (real MVTec anomalies).

The throughput and latency of the three methods are compared in
Table 7. SD has the highest computation time of the three methods.

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:10 • Timotei Ardelean & Tim Weyrich

Fig. 22. High-resolution (4096×4096) editing examples. Please zoom in for full resolution.

While the throughput of EDM2 is similar to EDM, the latency is
signi#cantly higher, despite using the smallest (XS) variant of EDM2.
It can be reduced to 1166 milliseconds by using the same model
for guidance, which allows computing the conditional and non-
conditional noise directions in parallel. Overall, these experiments
suggest that EDM is a good choice for our use-case, considering the
high-quality synthesis with a low latency. Finally, we emphasize

that even though we show that our choice of di"usion model is
sound, and that good results can be obtained with a relatively small
model with very little pretraining, we do not claim to have found
the best possible model for this part of the pipeline, as this is not
the scope of our work.

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

Example-Based Feature Painting on Textures • 183:11

Source Mask No dilation 𝐿dil = 27 𝐿dil = 52 𝐿dil = 77

Fig. 23. Failure case for Di!usion Texture Painting [Hu et al. 2024]. The
results are generated with a progressively dilated mask. Only at the largest
size (dilated by 77 pixels), the feature is actually painted.

Image Ano. scores Local 95% Dataset 95% Otsu Our Eq. (1)

Fig. 24. Comparing the binarization of anomaly scores using di!erent
thresholding functions.

S12 Implementation Details
Several implementation details have been omitted for brevity in the
main text. We expand here the explanation of various steps and the
hyperparameters used.

S12.1 Anomaly detection
In the #rst stage of the pipeline, we apply FCA to the residuals of
the VAE reconstruction. We use a similar preprocessing to Ardelean
and Weyrich [2024b]: resize the images to 512×512, use a Wide
ResNet-50 [Zagoruyko and Komodakis 2016], and train the VAE
for 10k iterations. After subtracting the original features from the
reconstruction we use FCA with a patch size of 7×7, 𝐿𝑀 = 3, and
𝐿𝑁 = 1.

S12.2 Semantic feature segmentation
In order to enable an e!cient training of the segmentation network
through contrastive learning, we #rst build a database of positive
and negative pairs. As described in section 3.1, we #rst binarize the

Fig. 25. Timing and errors for di!usion inversion.
N
or
m
al

A₁ A₂ A₃ A₄ A₅N
or
m
al

A₁ A₂ A₃ A₄ A₅

Fig. 26. Histograms of sampled negatives from each anomaly class, used
for contrastive learning: uniformly sampled (le!) and using our stratified
sampling (right). A disproportionate number of normal samples hinders the
proper separation of the anomaly classes.

anomaly maps from the previous step using an adaptive threshold.
Afterward, we form groups of prominent features by #nding the
connected components. To reduce some of the noise that arises from
binarization, we perform a small erosion (2×2) and then eliminate
objects smaller than 12 pixels. For each region, we then compute a
neural descriptor by averaging the ResNet features from the pixels
inside the mask. We employ a weighted average using the softmax
of the scores predicted by FCA, similarly to Sohn et al. [2023]. The

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

183:12 • Timotei Ardelean & Tim Weyrich

descriptors are used to compute pair-wise distances between all fea-
ture groups. To sample the positive pairs we simply take the closest
𝑀 = 10 feature groups in terms of distance. Our strati#ed sampling
of the negative pairs is more involved: the closest 50% groups are
#rst discarded as potential positives; then, the remaining descriptors
are clustered using 𝑁-means to obtain coarse group categories. We
then select a number of 𝑂 negatives in a strati#ed manner from
this pool, where 𝑂 is calculated as the expected number of groups.
That is, the total number of groups minus the largest cluster, which
contains normal features. Since 𝑂 is generally smaller than 50% of
the original number of groups, the negatives are distributed more
uniformly across the di"erent types of prominent features.
Our segmentation network takes as input the ResNet features

and computes task-aligned descriptors through contrastive learning.
The network consists of only 3 convolutional layers with kernel
sizes: 3×3, 3×3, 1×1, LayerNorm normalization, and GeLU activa-
tions. During training, we use an additional 2-layer MLP head that
is not used for clustering, as it is customary in self-supervised learn-
ing [Chen et al. 2021b; Grill et al. 2020]. We train the network for 10K
iterations and then obtain per-pixel descriptors for all images. Fi-
nally, these descriptors are clustered independently using 𝑁-means;
the number of classes (prominent feature types) is assumed to be
known by the user. Generally, we believe the user would have a
reasonable understanding of the features present in the dataset and
choose the granularity of the clustering according to their use-case.
Alternatively, the user could simply use a clustering method that
automatically detects the number of classes, such as DBSCAN.

S12.3 Synthesis
To support conditional synthesis, we adapt the di"usion architecture
used by EDM to incorporate spatial label maps. Firstly, we lift the
noise embedding to a H×W×C tensor instead of a C-dimensional
vector. Then, we compute label embeddings using two convolutional
layers, and we add them to the noise embeddings. Finally, we use
another 1×1 convolution before propagating this spatial embedding
to all the U-Net blocks. This minimal modi#cation of the architecture
e"ectively enables the control of the model through the label mask.
We pretrain the model on the DTD dataset for 750K iterations,

taking around 12 hours. Then, we separately #ne-tune the model
for each texture for another 750K iterations. The di"usion is per-
formed in the latent space of SD, making it more e!cient to generate
high-resolution images. The only exception is the SVBRDF synthe-
sis experiment, which performs the di"usion directly in the space
of material maps. All models are trained at a resolution of 64×64.
We use Pytorch’s RandomResizedCrop augmentation, along with
random horizontal and vertical $ips, and a slight color jitter.

For interactive editing, we developed a Blender script that lever-
ages the native tool for painting masks on textures. We process the
masked image to extract the desired edit and take a bounding patch
of at least 442×442 around the masked region. Our noise-mixing
algorithm is then applied with the Euler solver for 42 steps. The
average edit latency is 1.5 seconds, which enables interactive asset
modi#cations (as seen in the video attached to this supplementary
material).

S12.3.1 Noise uniformization. Our noise uniformization algorithm
speci#es a way to make a noise map 𝜴 more consistent with a
di"erent noise tensor 𝜶, which dictates the style of the instance
(overall color, contrast, pattern density, etc). We achieve this by
making the noise map follow the same low frequency distribution,
as described in the main paper:
𝜴
↓ :=𝜴 ↔ blur(𝜴) + upscale(shuffle(downscale(blur(𝜶))).

For blurring, we use a Lanczos #lter with a cuto" frequency 𝑃𝑂 = 0.1,
and we downsample the #ltered noise to a resolution of 32 × 32. For
the supplementary experiments, based on StableDi"usion (Fig. 15),
we use the same parameters, except that we only perform the down-
sampling and shu%ing along the columns. This is because the gen-
erated images resemble panoramas, which only have a stationary
nature along the width of the image. To create a large uniform noise
tensor, we #rst generate white noise and then divide the map into
equally-sized non-overlapping patches. The #rst patch conveys the
style (𝜶). All other patches (𝜴) are modi#ed using the algorithm
described above to follow this prototype; #nally, the patches are
rearranged to form the large noise map, which is the input for the
di"usion model.

S12.3.2 SVBRDF. The main di"erence between the synthesis of
material maps compared to RGB images is that we do not use a latent
model for SVBRDFs. We train the model with 64×64 patches from
the input material and do not use color jitter for this experiment.
Since there is only one SVBRDF as input, we did not use contrastive
learning for the semantic segmentation. Instead, as the irregularities
are easily noticeable in either the albedo or the roughness maps, we
computed embeddings using a random of set of 5×5 #lters applied on
the pixels’ features. The resulting descriptors were directly clustered
using 𝑁-means.

S12.4 Video
The video attached to this supplementary material contains an in-
teractive editing session in Blender. Here, we make use of the brush
tool from Blender, which allows the user to paint on a 3D mesh,
while enabling programmatic access to the updated underlying UV-
mapped 2D texture. We use the mask-painted texture to extract
the semantic conditioning and then apply our trained method on
the texture patch which is being edited. To improve the latency,
we preload into GPU memory the weights of the model and the
di"usion trajectory needed for our noise-mixing. This is done in a
background thread when a certain object is selected for editing, so
that a single set of weights must be stored in memory at a speci#c
time. All textures in the scene have a resolution of 2048×2048, and
they have been generated using our method except for the teapot,
for which we use an arbitrary image to showcase our feature trans-
fer capabilities. The blemishes are transferred from the MVTec tile
texture. Note that we only apply our method to the base color of
the materials, leaving the other material maps unchanged.

S12.5 Code Release
The code is available at: github.com/TArdelean/FeaturePainting.

ACM Trans. Graph., Vol. 44, No. 6, Article 183. Publication date: December 2025.

https://github.com/TArdelean/FeaturePainting

	Abstract
	1 Introduction
	2 Related Work
	2.1 Example-based feature synthesis
	2.2 Anomaly Localization and Classification
	2.3 Weathering synthesis

	3 Method
	3.1 Prominent feature scoring
	3.2 Feature type clustering
	3.3 Guided texture generation
	3.4 Editing
	3.5 Stationary infinite texture generation

	4 Experiments
	4.1 Editing results
	4.2 Synthesizing materials

	5 Ablations
	6 Limitations
	7 Conclusion
	Acknowledgments
	References
	S1 Dataset examples
	S2 Additional experiment on latent noise uniformization
	S3 Additional details on the tileable texture synthesis of arbitrary size.
	S4 Conditional generation on MVTec Textures
	S5 Uncurated set of generated images
	S6 Additional high-resolution results
	S7 Comparison Addition
	S8 Comparison of different thresholding functions
	S9 Timings
	S10 Detailed numerical results
	S11 Discussion on the choice of generative model
	S12 Implementation Details
	S12.1 Anomaly detection
	S12.2 Semantic feature segmentation
	S12.3 Synthesis
	S12.4 Video
	S12.5 Code Release

