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Abstract— Despite an emerging interest in MIMO radar,
the utilization of its complementary strengths in combination
with optical depth sensors has so far been limited to far-field
applications, due to the challenges that arise from mutual sensor
calibration in the near field. In fact, most related approaches
in the autonomous industry propose target-based calibration
methods using corner reflectors that have proven to be unsuitable
for the near field. In contrast, we propose a novel, joint
calibration approach for optical RGB-D sensors and MIMO
radars that is designed to operate in the radar’s near-field
range, within decimeters from the sensors. Our pipeline consists
of a bespoke calibration target, allowing for automatic target
detection and localization, followed by the spatial calibration of
the two sensor coordinate systems through target registration.
We validate our approach using two different depth sensing
technologies from the optical domain. The experiments show
the efficiency and accuracy of our calibration for various target
displacements, as well as its robustness of our localization in
terms of signal ambiguities.

I. Introduction
The ability to sense an environment in terms of accurate

3D information is crucial for many applications, including
robotics, autonomous driving, or human-computer interaction.
A prominent sensor class is range-sensing imagers; this work
considers both optical imagers as well as imaging radar.

Driven by data availability, high spatial resolution, and low
cost, optical depth sensing technologies such as time-of-flight
cameras and single- or multi-view stereo algorithms are widely
used; a tremendous amount of research has been conducted,
for example, in the field of static [1] and dynamic [1]–[3]
reconstruction, human pose and shape estimation [4], and
scene understanding [5].

On the other hand, a growing interest has emerged
with respect to radar imaging, prominently utilized for
security scanning [6], [7] and autonomous driving [8], [9].
Radar is able to provide range cues in the presence of
fog or dust, can penetrate fabric, and is insensitive to
environmental light. Compared to camera-based systems,
radar imaging is a recent range-sensing technology that
involves calculating spatial object or feature distributions,
commonly by using digital beamforming. Popular sensors are
multiple-input multiple-output (MIMO) radars, which process
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Fig. 1: Our calibration estimates the relative rotation 𝑅 and
translation 𝑡 between an optical RGB-D sensor and an imaging
MIMO radar incorporating high angular resolution.

the received signals coherently to form a synthetic antenna
aperture by comparing the phase difference between multiple
incoming signals at distinctive spatial receiver positions. They
essentially exploit that each antenna (both transmitters and
receivers) looks at scene points from different directions,
which allows to 3D reconstruct a scene from the resulting
phase differences. The result is commonly represented as a
voxel grid or point cloud (cf. Figure 1), including confidence
values about a target’s presence that are proportional to the
received signal power.

A growing body of work [10]–[17] recognizes the potential
of combining optical depth sensors (which we collectively
refer to as RGB-D sensors), and MIMO radars. However,
they invariably operate in the radar’s far field, at distances
where standard solutions exist to mutually calibrate (align)
the respective sensor coordinate systems. In contrast, we
take on the unique challenge of localizing joint calibration
objects within the MIMO radar’s near-field range, i.e., within
few decimeters, where traditional radar targets appear
strongly distorted.

While a small number of previous works in the context of
autonomous driving compute the spatial calibration on the
fly during the capture process, e.g., by leveraging motion
cues [10], [18] during a car drive, most calibrations are static
and target-based, that is, a specific calibration target [11]–[17]
is designed to yield robust and accurate reconstruction results
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Fig. 2: The calibration is divided into sensor-specific parts for target detection and target localization. To acquire the calibration
parameters, we register the localized target points from the optical domain (blue) to points of the radar domain (orange).

in all relevant sensors. The primary target of choice to be
detected by a radar in the far field is a metal, trihedral corner
reflector [12]–[17] because of its strong echo signal for a
comparatively large range of acceptance angles: in far-field
conditions, the signal propagation can be approximated as
parallel to the radar’s line of sight, resulting in a retroreflective
behavior for various antenna positions. Moreover, the reflector
geometry ensures a total path length of the received signal
that is constant across its entire aperture, which is why the
corner is reconstructed as a bright, seemingly planar reflector
that can easily be detected automatically.

For MIMO arrays in near-field scenarios with large angles
between a target and a transmitter-receiver antenna pair,
however, the desired properties of a corner reflector do
not hold [19]. Figure 3 illustrates the distinctive signal
response between a corner reflector captured in the far field
and in the near field. For this reason, we conclude that
the aforementioned line of related work is not suitable for
calibration in the near field, where the target has only a few
decimeters distance to the sensor. An orthogonal approach to
ours proposed by Chen et al. [11] leverages optical markers
as target to calibrate an imaging radar with a motion capture
system for reconstruction of human bodies. The method
introduced in this paper can be applied to optical RGB-D
technologies with a 2D-3D correspondence relationship,
for example time-of-flight and single- or multi-view stereo
systems. These systems provide 2D depth maps, which can be
back-projected into 3D given the camera’s intrinsic parameters.
To the best of our knowledge, we are the first to propose an

Fig. 3: Target confidence of a corner reflector captured by a
MIMO radar at 2.6 m (left) and 0.3 m (right) distance.

automatic target-based calibration method for optical RGB-D
sensors and imaging MIMO radars in the near field.

To achieve this, the contributions of this paper are:
• Design of a calibration target that is robustly detectable

from various optical RGB-D sensors and MIMO radars.
• An automatic pipeline for target detection and

localization, followed by a spatial registration.
• An overall framework that yields precise calibration

parameters with millimeter accuracy, assessed by pairing
a MIMO radar sensor with two different RGB-D
technologies, time-of-flight and multi-view stereo.

A. Overview
Our full pipeline is illustrated in Figure 2. We capture a

calibration target, which is specifically designed for near-field
conditions, from an optical RGB-D sensor and a MIMO
radar. The optical sensor provides an RGB and a depth image,
denoted as 𝑰𝑜 ∈ R𝑊×𝐻×3 and 𝑫𝑜 ∈ R𝑊×𝐻 , respectively.
Furthermore, we acquire a radar point cloud 𝑷𝑟 ∈ R𝑁×3

with confidence values proportional to the received signal
amplitude 𝑰𝑟 ∈ [0, 1]𝑁 . Since the visibility of materials and
geometries depends on the received signal wavelength, the
target detection as well as the target localization are divided
into sensor-specific parts. During detection, our method
finds possible target candidates. Given these candidates, the
localization stage utilizes sensor-specific prior knowledge
about the calibration target to filter outliers and calculate the
spatial position of the point samples that are used for the
following registration stage. During registration, our method
computes the optimal transformation between point samples
from the optical and the radar domain, respectively. Lastly,
for evaluation, we optionally employ an additional refinement
stage with a second capture target.

II. Calibration Target
To establish correspondences between an optical depth

sensor and a MIMO radar, a calibration target is required
that is robustly detectable, despite the significant domain gap
between the different operating wavelengths. We opted for a
target that can be detected within a wider range of viewing
angles, to avoid having to precisely align the target in front the
MIMO radar, as would be required for many potential target



Fig. 4: The calibration target consists of four styrofoam
spheres (� 5 cm), each with a steel ball (� 2.5 mm) embedded
at its center; sphere centers form a square of 6 cm edge length.
A fifth steel ball is centered on the styrofoam back plane.

geometries where reconstruction quality significantly depends
on the angle of incidence to the transmitters. Our calibration
target is depicted in Figure 4 and consists of four textured
styrofoam spheres, arranged in a square and mounted onto a
styrofoam board. While styrofoam is a material hardly visible
to radar, the spheres contain smaller, highly radar-reflecting
steel balls inside, which were embedded using a high-precision
drill. An additional steel ball at the center of the square is
placed onto the styrofoam board. We will now elaborate on
our design choices. First, we chose view-independent spherical
shapes since hard corners and edges are challenging to detect
in range sensors with millimeter accuracy due to multi-path
signal interference at object silhouettes [20]. Furthermore, due
to its material properties, metal is highly reflective for radar
signals but sharp edges lead to diffraction, which introduces
sidelobes and other types of noise into the reconstructed
point cloud. Therefore, we took countermeasures to ensure
the signal-to-noise ratio of our target is as high as possible.
The square arrangement, which shares the symmetry and,
approximately, the spatial extents of the MIMO antenna layout,
provides a calibration feature distribution (see Section III)
within the maximum focused area of the radar field of view,
helps balancing out symmetric noise artifacts and enables
the possibility of outlier detection through spatial constraints.
Ensuring uniformity in the spot visible to each transmitting
antenna, similar to the assumption made for corner reflectors
in the far field, the diameter of the metal spheres is chosen
such that the reconstructed signal is close to a single point
target: in our setup, the diameter of 2.5 mm is smaller than the
minimum transmitted wavelength. As the size of the spheres
become very small this way, they become challenging to
detect in RGB-D sensors simultaneously. For this reason, we
embed the metal spheres that form a square at the center
of comparably larger, 5 cm-diameter styrofoam spheres. To
support optical stereo technologies, which rely on color
features for high-quality depth reconstructions, we colored and
textured the styrofoam spheres with random patterns. Note
that, in this way, we induce noise into the radar reconstructions
as well, since the material is not completely invisible anymore.
In the next section, we elaborate on how to deal with this
noise. Moreover, we ensure the spatial distance between both,
metal and styrofoam spheres is sufficiently large to avoid
multi-path effects. The final calibration target is placed in

front of both sensors such that the styrofoam spheres are
inside their respective field of view.

III. Automatic Target Detection and Localization
The purpose of the target detection and localization stages

is to automatically find the positions of the four metal balls,
which are located at the center of the styrofoam spheres. Since
optical and radar sensors operate on different wavelengths, the
detection as well as the localization stage is sensor-specific.
During target detection, we aim to find target candidates of
point clusters in 𝑫𝑜 and 𝑷𝑟 , respectively. In the localization
stage, we leverage photometric and spatial constraints to filter
these candidates as well as to infer the metal ball locations.

A. Sensor-specific Target Detection
In the following, we describe the target detection for RGB-D

sensors and MIMO radars separately.
1) Target Detection in RGB-D Sensors: Since the metal

balls are not visible for RGB-D sensors, our method infers
their spatial position from the styrofoam sphere centers. We
detect the spheres by utilizing the 2D-3D correspondence of
a depth map 𝑫𝑜 and its respective RGB image 𝑰𝑜. Instead
of detecting the sphere surface directly, we identify circles
in the image plane. While spheres generally map to ellipses,
for us this approximation still reliably detected the spheres.
We utilize OpenCV’s Circle Hough Transform [21] to find
circles in 𝑫𝑜, in which we clamp the depth values to the
near-field range of one meter. Note that, in case of stereo
vision technologies, in which 𝑫𝑜 is directly computed from
𝑰𝑜, this method can also be applied to RGB images instead.
To summarize, our method produces a set of circle candidates,
in which four of them are assumed to describe the projected
surface of the styrofoam spheres in the image plane.

2) Target Detection in MIMO Radars: The metal balls
inside the styrofoam spheres are highly reflective and
appear as local maxima in the confidence values of the
reconstructed point cloud 𝑷𝑟 . Compared to the optical domain,
reconstructions from radar imaging sensors are more prone
to noise and automatic circle detection based on either a
projected depth map or confidence map becomes challenging.
In particular, we experienced scattered signals of possibly
higher amplitude than the metal balls, which originate from
the colored styrofoam spheres that are generally closer to
the sensor (cf. radar top view in Figure 2). Contrary to
related work, which locates corner reflectors based on the
assumption of the brightest scatterer, i.e. the target of highest
confidence value, we relax this assumption and detect multiple
bright scatterers instead. Given 𝑷𝑟 and 𝑰𝑟 , we filter out
noise and clutter with low confidence based on a decibel
threshold 𝑡dB. Next, our method uses greedy non-maximum
suppression (GreedyNMS) [22] to find point clusters of high
confidence with respect to a Euclidean distance threshold
𝑡min. In other words, in each iteration we accept the point
𝒑𝑟 ∈ 𝑷𝑟 of highest confidence as a point cluster and reject
all other points belonging to the same cluster within a local
neighborhood determined by 𝑡min. Moreover, an additional
threshold of a maximum Euclidean distance to all previously



selected clusters, 𝑡max, ensures to select further clusters close
to previous ones and avoids the addition of signals from the
background. After 𝑁 ≥ 5 cluster candidates are found, we
iteratively assign points, ordered by confidence, to the nearest
cluster, until each cluster has 𝑀 samples. Based on these
samples, we compute the centroid of each cluster. In this
way, we acquire a set C = {𝒄𝑘 | 𝒄𝑘 ∈ R3 ∧ (𝑘 = 1, ..., 𝑁)} of
cluster centers, in which we assume that five of them belong
to the metal balls of our calibration target.

B. Sensor-specific Target Localization
Analogously to the previous section, the localization of

the metal ball centers (from amongst the candidates from the
target detection stage) is sensor-specific and described in two
separate sections.

1) Target Localization in RGB-D Sensors: Given the set
of circle candidates from the detection stage, we utilize
spatial and photometric constraints to find the four circles
belonging to the styrofoam spheres. Similar to GreedyNMS,
our method iterates through all detections that are ordered
by circle confidence and filters duplicates as well as outliers
based on two thresholds for color and size, respectively. The
color threshold filters candidates on the basis of their median
color deviation from the ground-truth. The size threshold
discards candidates of significantly deviating radii from
already selected circles. We continue the filtering procedure
until four circles are acquired. Given the intrinsic parameters
of 𝑫𝑜, the circles are projected back into a 3D point cloud.
To find the relative location of these point clouds with respect
to their arrangement on the styrofoam board, we assume that
the angle difference between the up-vector of the optical and
radar sensor coordinate systems is less than 90◦. Based on
this assumption, we order the point clouds with respect to
the up and right vector of the optical coordinate system. We
denote the resulting set of sphere-shaped point clouds as
S𝑜 = {𝑺 𝑗

𝑜 | 𝑺 𝑗
𝑜 ∈ R𝑁 𝑗×3 ∧ ( 𝑗 = 1, ..., 4)}.

To locate the sphere centers Ω𝑜 = (𝒄1
𝑜, ..., 𝒄

4
𝑜) we minimize

a weighted least-squares problem of a sphere equation 𝐿data,𝑜
with known radius 𝑟 that is fit to all points 𝒔 𝑗𝑜 ∈ 𝑺 𝑗

𝑜:

Ω𝑜 = arg min
Ω̂𝑜

𝐿data,𝑜 (1)

= arg min
Ω̂𝑜

4∑︁
𝑖

𝑁 𝑗∑︁
𝑗

𝑤 𝑗

(
∥ �̂� 𝑖

𝑜 − 𝒔 𝑗𝑜∥2
2 − 𝑟2) . (2)

Since optical depth sensors suffer from noise in particular
at silhouettes, the point-wise error weight 𝑤 𝑗 = ⟨𝒏 𝑗 , 𝒆dir⟩
describes the range confidence of a point with normal 𝒏
with respect to the sensor’s viewing direction 𝒆dir. To filter
possible outliers, we minimize the energy term multiple times
using RANSAC on the point clouds. During each iteration,
we consider a random subset 𝑺 𝑗

𝑜 with inlier ratio 𝑘 and error
𝑒 (from Equation 2) as the current best set 𝑺 𝑗

𝑜,best in case the
following criterion is fulfilled:

𝑺 𝑗

𝑜,best =

{
𝑺 𝑗
𝑜 |𝑘 − 𝑘best | > 𝑡inl ∨ 𝑒 < 𝑒best ,

𝑺 𝑗

𝑜,best otherwise .
(3)

An inlier ratio threshold, 𝑡inl, offers a trade-off parameter
between inlier maximization and error minimization.

2) Target Localization in MIMO Radars: To localize
the five metal balls among the cluster centers detected in
𝑷𝑟 , we use their unique spatial topology established by
design of the calibration target. In this way, it is possible to
filter highly ambiguous candidates that may originate from
the color-coated styrofoam spheres or other parts of the
environment. Thereby, we utilize the fifth, central metal ball
as an anchor point to localize the styrofoam board. Among
all cluster centers in C, our method selects the best subset
S𝑟 = {𝒄𝑘𝑟 | 𝒄𝑘𝑟 ∈ C ∧ (𝑘 = 1, ..., 4)}, together with the anchor
point 𝒄a,𝑟 ∈ C, by minimizing the total weighted energy of:

S𝑟 = arg min
Ŝ𝑟 ,𝒄𝑟,a∈C

𝐿data,𝑟 + 𝛼𝐿sphere + 𝛽𝐿plane + 𝛾𝐿anchor . (4)

Based on the a priori knowledge that four metal balls lie on a
common plane, the term 𝐿data,r minimizes the plane equation
parameterized by normal 𝒏 ∈ R3 and reference point 𝒌 ∈ R3,
of which its parameters are estimated along with S𝑟 :

𝐿data,𝑟 =
∑︁

𝒄𝑟 ∈Ŝ𝑟

��⟨�̂�𝑟 − 𝒌, 𝒏⟩
�� . (5)

The regularization term 𝐿sphere enforces each sphere center
pair (𝒄𝑖 , 𝒄 𝑗 ) to be close to the expected spatial distance 𝑑𝑖, 𝑗 :

𝐿sphere =

4∑︁
𝑖=1

4∑︁
𝑗=𝑖+1

𝒗𝑖, 𝑗 · ( 1
∥𝒗𝑖, 𝑗 ∥2

− 𝑑𝑖, 𝑗
) 

2 . (6)

The vector 𝒗𝑖, 𝑗 = 𝑓 ( �̂� 𝑖
𝒓 ) − 𝑓 ( �̂� 𝑗

𝒓 ) describes the relative
distance between two spheres �̂� 𝑖

𝒓 , �̂�
𝑗
𝒓 ∈ Ŝ𝑟 , and the function

𝑓 (𝒄) = (𝒄 − 𝒏 · ⟨𝒄 − 𝒌, 𝒏⟩) projects the center 𝒄 ∈ R3 onto
the estimated plane. In a complementary manner, the term
𝐿plane minimizes the distance 𝑑 from a center to the styrofoam
board, which is localized through the anchor point 𝒄a,𝑟 :

𝐿plane =
∑︁

𝒄𝑟 ∈Ŝ𝑟

|⟨�̂�a,𝑟 − �̂�𝑟 , 𝒏⟩ − 𝑑 | . (7)

Lastly, the term 𝐿anchor ensures that the anchor point 𝒄a,𝑟 lies
in the center of the square sphere arrangement:

𝐿anchor =
 𝑓 ( �̂�a,𝑟 ) −

∑︁
𝒄𝑟 ∈Ŝ𝑟

1
4
�̂�𝑟


2 . (8)

To find S𝑟 , our method tries
(𝑁

5
)

combinations to sample
five cluster centers Ŝ𝑟 in each iteration. Since four of
these centers should lie on a common plane, we test all
possible

(5
4
)

combinations to find the plane (𝒌, 𝒏), which
minimizes Equation 5. Similar to optical localization, the
four metal ball candidates of the current sample are ordered
with respect to the up and right vector of the sensor coordinate
system. Next, the current sample is evaluated in terms of
its inlier ratio, using Equation 5, and the error function
given in Equation 4. Lastly, we compute Equation 3 to
determine, whether the sample Ŝ𝑟 is better than the current
best random subset. To show the necessity of the additional
spatial constraints in Equation 4, an ablation study is
performed in Section V.



IV. Automatic Spatial Registration and Refinement

Based on the previously localized metal balls, the final
stage automatically computes the relative rigid transformation
between the coordinate systems of a sensor pair through
spatial registration. Moreover, we support an optional
refinement stage, utilizing a second object of simpler geometry
to establish a significantly higher amount of correspondence
pairs. As we will show, this optional stage confirms our
method’s accuracy but does not significantly improve results.

A. Calibration Parameter Estimation

Based on their spatial location on the styrofoam board, we
find ordered pairs (𝒄𝑖𝑟 , 𝒄𝑖𝑜) of sphere centers in the radar and
optical sensor coordinate system, respectively. We assume
that both sensor coordinate systems are metrical and use a
priori knowledge about their factory settings to determine
the uniform scale matrix 𝑺 ∈ R3×3 from the optical to the
radar coordinate units. Then, we solve for the optimal rotation
𝑹 ∈ R3×3 and translation 𝒕 ∈ R3 from the optical coordinate
system to the radar coordinate system by minimizing their
root mean square error. We use the closed-form solution of
Kabsch [23] to acquire 𝑹 and 𝒕 as follows:

𝑯 = �̄�𝑇
𝑟 · 𝑺 · �̄�𝑜

SVD
== 𝑼 · Σ · 𝑽𝑇 (9)

𝑹 = 𝑼𝑽𝑇 (10)
𝒕 = 𝒄𝑟 − 𝑹 · 𝑺 · 𝒄𝑜 (11)

The mean of the four sphere centers in sensor domain ∗ is
denoted as 𝒄∗. The data matrices �̄�𝑟 , �̄�𝑜 ∈ R4×3 contain the
mean-centered spheres in pairwise order. Since 𝑺 is computed
a priori, Σ is expected to be close to the identity matrix.

B. Calibration Refinement for Evaluation

As part of our evaluation (Section V), we employ an
additional refinement stage as a method to assess potential
calibration errors arising from uncertainties with respect to
the sensor range. In this stage, the target for establishing
correspondences is a simple, textured metal plate mounted
on a styrofoam board for an upright standing. The amount
of received signal from a planar surface is strongly view
dependent for a MIMO radar such that the plate has to
be placed parallel to the antenna aperture. Since it can be
assumed that the first estimate of 𝑹 and 𝒕 is accurate enough,
we compute correspondences via a projective mapping. Given
the intrinsic parameters of 𝑫𝑜, we transform all points in 𝑷𝑟

to the optical image plane and establish correspondence pairs
based on points sharing the same pixel coordinate. Next, we
repeatedly solve for 𝑹 and 𝒕 using the Kabsch algorithm in
combination with RANSAC, in which we randomly sample
correspondence pairs to minimize Equation 3.

V. Evaluation

In this section, we describe the evaluation setup as well as
the quality assessments of our calibration.

A. Evaluation Setup

The MIMO radar is a submodule of an Automotive Radome
Tester provided by Rohde & Schwarz [24]. Its virtual aperture
consists of 94 × 94 transmitting and receiving antennas,
arranged on a square frame. The signal form is stepped
frequency continuous wave within a frequency range from
72 GHz to 82 GHz with 128 frequency steps [25]. To acquire
𝑷𝑟 and 𝑰𝑟 , we make use of a state-of-the-art reconstruction
method for millimeter wave imaging, which is known as
back-projection and described further in [7], [25]. 𝑷𝑟 is
reconstructed in a range between 20–65 cm. To demonstrate
that our calibration target can be used for various optical
technologies, we employ two distinct depth sensing methods:
amplitude modulated continuous wave time-of-flight (ToF)
using the Microsoft Kinect Azure [26] camera, and multi-view
stereo (MVS) using five Canon DSLR cameras with > 24 MP
resolution. The setup is depicted in Figure 5. We evaluate the
calibration within a constrained environment using styrofoam
as a rest table, a black screen made of fabric, and absorbers
behind. Our experiments are divided into two scenarios: first,
we record the calibration target, in a constrained position,
followed by a more natural capture process. With respect
to the former, we place the calibration target on a plastic
turntable such that it is centered in the radar coordinate system.
The anchor metal ball represents the center of its rotation.
We place the turntable at 30 cm, 40 cm and 50 cm distance
to the radar, respectively, and rotate the calibration target
between [−20◦, 20◦] in steps of 5◦. To simulate a natural
capture process, we relocate the calibration target multiple
times within a range of 30–50 cm distance such that it is
roughly centered by eye with respect to the radar. In this way,
we acquire 40 different calibration target captures. Lastly, we
record the refinement object once at 30 cm distance. We use
this object in our experiments only if explicitly noted.

In our calibration pipeline, we set the parameters 𝑡dB = 15,
𝑡min = 2 cm, 𝑡max = 30 cm, 𝑡𝑖𝑛𝑙 = 0.05, 𝑁 = 20, 𝑀 = 7, 𝛼 = 2,
𝛽 = 2, and 𝛾 = 4. Furthermore, we set the maximum number
of RANSAC iterations in the optical localization stage to
1000 and in the optional refinement stage to 100.

Fig. 5: Our setup consists of an imaging MIMO radar, a
Kinect Azure camera (ToF) and five DSLR cameras (MVS).



B. Results
We show the efficiency of our method in three analyses.

First, we evaluate the performance with respect to different
orientations and distances of the calibration target. Second,
we perform an ablation study to demonstrate the importance
of the target design together with the utilization of spatial
constraints in the radar domain. Lastly, we show qualitative
results with respect to three captured objects. We captured
objects of distinctive geometry and color, on which we
measure the calibration error: a metal disk (at 30 cm and
40 cm distance to the MIMO radar), a symbol cut out from
cardboard (at 30 cm), and a 3D-printed hand model coated in
metal lacquer (at 30 cm). Our primary metric is the Chamfer
distance 𝐶 between object points 𝒑𝑜 ∈ 𝑷𝑜 of an optical
sensor and points 𝒑𝑟 ∈ 𝑷𝑟 of the MIMO radar:

𝐶 =
1
2

RMSE(𝑷𝑜, 𝑷𝑟 ) +
1
2

RMSE(𝑷𝑟 , 𝑷𝑜) (12)

The root mean square error is calculated on the Euclidean
norm per point pair, established based on nearest Euclidean
distance. In the following, we will address each experiment
in more detail.

1) View- and Distance-dependent Calibration: To
demonstrate that our calibration target can be placed in front
of a MIMO radar without giving a considerable amount of
attention to its precise placement, we assess the calibration
accuracy with respect to multiple orientation angles and
distances. More specifically, we calculate the Chamfer distance
of the cardboard symbol that was captured at 30 cm distance
to the MIMO radar. Results are shown for both, the ToF-radar
and MVS-radar sensor pair in Figure 6.Additionally, for both
pairs, we ran the calibration 20 times for the same target at
(30 cm, 0◦), yielding a standard deviation of ±0.004◦ for the
average rotation and ±0.17 mm for the average translation.

For both pairs, our method works best within all recorded
orientation angles and a distance between 30–40 cm. Within
this range, all samples of the ToF-radar and MVS-radar
calibration have an average Chamfer distance of 1.69 mm
and 1.72 mm, respectively, regardless of the target orientation.
The average error increases by 0.53 mm and 0.54 mm
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Fig. 6: The Chamfer distance for the ToF-radar and MVS-radar
sensor pair, respectively. We plot the target angles and
distances from the estimated plane in the radar coordinate
system during sphere localization.

Fig. 7: MVS-radar calibration of a target at 50 cm distance
(left). The anchor point (orange) approximately aligns with
the radar signal. The error of a disk at 30 cm (middle) and
40 cm (right) decreases with its distance to the target.

when including the results at ≥50 cm distance. Upon
further investigation, we observe that the Chamfer distance
significantly depends on the spatial distance between the
calibration location and the location of the evaluation object.
In Figure 7, the results for a calibration target, captured
at 50 cm distance, are depicted with respect to the metal
disk, placed at 30 cm and 40 cm distance, respectively. This
example illustrates that the error decreases with the distance
between the calibration target location and the evaluation
object. Hence, we conclude that the calibration is only valid
within a specific range due to perspective distortion and
systematic range errors of the RGB-D sensors. Moreover, the
ToF camera exhibits a comparably large Chamfer distance at
50 cm distance and orientations > 5◦ when compared to the
MVS-radar calibration. Assessed from the average calibration
parameters, the ToF coordinate system has a spatial offset of
{5 cm, 17 cm, 15 cm} and {12◦, 15◦, 20◦} with respect to the
(right, up, direction) vector triple of the radar coordinate
system. As a consequence, the angle between the target
plane and the ToF view direction is +16◦ larger than in the
radar coordinate system, such that results at 22◦ in Figure 6
have an orientation of 38◦ in the ToF coordinate system.
To summarize, the application-dependent working distance
has to be considered during target calibration. Inside this
working distance, our approach achieves millimeter accuracy
far below the radar wavelength (3.7 mm) and the random
noise distribution (≤ 17 mm) of the ToF camera. Since our
calibration stays accurate, regardless of the target orientation
in our experiments, we conclude that it is not required to
balance the target precisely in front of the sensors.

2) Ablation Study: We demonstrate the necessity of the
choices made during calibration target design as well as the
utilization of these choices through spatial constraints in
an ablation study. The results with respect to the Chamfer
distance of the cardboard symbol are given in Figure 9. Since
our main contribution lies in a near-field calibration of an
imaging MIMO radar, the focus of this study is on target
localization in the radar domain. Without any systematic
spatial arrangement of the spheres, the only term that can
be applied during localization is 𝐿data,𝑟 and the resulting
calibration error is within 5 cm on average. By arranging the
spheres in a square, the additional regularization term 𝐿sphere
can be employed, which decreases the calibration error by



Fig. 8: We show qualitative results for a cardboard symbol, a disk, and a 3D printed hand, respectively. The Chamfer distance
𝐶 is indicated in the bottom of the error visualization. RMSE∗ denotes the point-wise RMSE between a radar point and the
nearest point of Euclidean distance from the optical sensor.

4 cm on average. Lastly, the anchor point that is mounted
in the center of the square on the styrofoam board leads
to another error decrease by 8 mm through the utilization
of the regularization terms 𝐿plane and 𝐿anchor. To conclude,
the results demonstrate that the square arrangement with
five metal balls is necessary to achieve a calibration quality
below 2 mm. So far, our calibration is single-shot, which
means it only requires one capture of the calibration target
and, thus, little capture effort. We further show results of
a second capture, in which we record the metal plate and
perform the refinement stage. While the median of both, the
ToF-radar (1.86 mm) and MVS-radar (1.72 mm) calibrations
are similar to calibration without refinement (1.92 mm and
1.72 mm), we observe a common decrease in the error
variance, together with the mean. This decrease is due to the

1 2 3 5 10 20 30 50 100

Fig. 9: We vary the spatial constraints during radar sphere
localization to simulate the availability of target elements
added during the design. We also assess the calibration quality
after the refinement stage. The median and the mean of each
box plot are marked as solid and dashed lines, respectively.

improving calibration results specifically at ≥ 45 cm distance,
since the refinement target is placed at 30 cm and, therefore,
is able to correct the misalignment arising from the spatial
distance between the position of calibration target and the
cardboard symbol. However, we argue that in these cases it
would have been simpler to place the calibration target at
30 cm in the first place. In summary, we demonstrate that each
of our target design choices is necessary and the calibration
can not be further improved by a second capture.

3) Qualitative Results: In the last experiment, the
calibration accuracy of a target placed at 30 cm distance
is assessed in qualitative results using the three additional
captured objects of distinctive geometry complexity and
distance. In Figure 8, we estimate the Chamfer distance and
the point-wise RMSE from a radar point to the nearest point,
and show results for the cardboard, the metal disk and the
hand, each recorded at a distance of 30 cm. For all objects, the
RMSE is primarily below 2 mm. Its distribution is geometry-
and sensor-specific. Moreover, the ToF-radar alignment results
in higher point-wise errors due to the fact that active ToF
cameras exhibit more noise than high-resolution passive MVS
algorithms. The cardboard symbol in the first row has the best
average alignment quality for both, ToF-radar and MVS-radar
calibrations. The disk in the second row exhibits a comparably
higher Chamfer distance due to flying pixel artifacts in the
ToF camera. Lastly, the hand in the third row of Figure 8
demonstrates the huge domain gap between reconstructions
of optical and radar sensors. For complex geometries, most
of the signals do not return back to the MIMO radar, which
underlines the importance of careful calibration target design.
In summary, the qualitative results further corroborate the
accuracy of our calibration method and offer interesting
findings in terms of the domain-specific sensor characteristics.



VI. Conclusion
We presented a novel calibration method for optical

technologies in combination with an imaging MIMO radar in
the near field within centimeter range. Considering the large
domain gap between the two frequency domains, we designed
a suitable calibration target that consists of four textured
styrofoam and five metal balls, arranged at the corners and
the center of a square. Given a capture of this target, our
method detects circles in the optical domain, and clusters
points of high target confidence in the radar domain. Due to
careful design of the target’s spatial arrangement, we utilized
photometric as well as spatial constraints to detect and localize
the four metal balls within each sensor coordinate system.
Finally, we compute the calibration parameters through spatial
registration of these balls and propose to assess the alignment
quality in an optional refinement stage. In the evaluation, we
demonstrate the effectiveness of our target design, eliminating
the need for careful positioning in front of a sensor, and show
the importance of the spatial arrangement. In summary, our
calibration target is single-capture, user-friendly with respect
to its placement, and yields millimeter accuracy up to a
remaining error of less than 2 mm, which is considerably
small such that it may originate from sensor noise itself.
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