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a b s t r a c t

In recent years, the increasing on-board compute power of mobile camera devices gave rise to
a class of digitization algorithms that dynamically fuse a stream of camera observations into a
progressively updated scene representation. Previous algorithms either obtain general 3D surface
representations, often exploiting range maps from a depth camera, such as, Kinect Fusion, etc.; or they
reconstruct planar (or distant spherical, respectively) 2D images with respect to a single (perspective
or orthographic) reference view, such as, panoramic stitching or aerial mapping. Our work sets out
to combine aspects of both, reconstructing a 2.5-D representation (color and depth) as seen from a
fixed viewpoint, at spatially variable resolution. Inspired by previous work on ‘‘progressive refinement
imaging’’, we propose a hierarchical representation that enables progressive refinement of both colors
and depths by ingesting RGB-D images from a handheld depth camera that is carried through the scene.
We evaluate our system by comparing it against state-of-the-art methods in 2D progressive refinement
and 3D scene reconstruction, using high-detail indoor and outdoor data sets comprising medium to
large disparities. As we will show, the restriction to 2.5-D from a fixed viewpoint affords added
robustness (particularly against self-localization drift, as well as backprojection errors near silhouettes),
increased geometric and photometric fidelity, as well as greatly improved storage efficiency, compared
to more general 3D reconstructions. We envision that our representation will enable scene exploration
with realistic parallax from within a constrained range of vantage points, including stereo pair
generation, visual surface inspection, or scene presentation within a fixed VR viewing volume.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

The past decade has seen an emergence of interactive scene
igitization systems that dynamically fuse a stream of sensor
bservations into a progressively updated scene representation.
he key benefit of dynamic (‘‘online’’) reconstruction over offline
ethods (where all data is captured first before a reconstruction
appens in a post-process) is the ability to interactively capture
ore data where the current reconstruction indicates insufficient
ata so far [1].
This principle is now prominently used both for 2D imaging

e.g., panorama mode in mobile phone camera applications) and
D model reconstruction; the latter was popularized through
he introduction of affordable color+depth (RGB-D) cameras and
mmediately spawned the field of online scene digitization from
andheld RGB-D cameras, pioneered by KinectFusion [2,3].

✩ This article was recommended for publication by Prof. J Zheng.
∗ Correspondence to: Computer Graphics Group, University of
iegen, Hoelderlinstrasse 3, 57076 Siegen, Germany.

E-mail address: markus.kluge@uni-siegen.de (M. Kluge).
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097-8493/© 2023 Elsevier Ltd. All rights reserved.
Even though a full 3D reconstruction (geometry and color)
has the appeal of capturing more comprehensive aspects of a
scene, and despite many modern mobile phones featuring RGB-D
sensors, 2D imaging remains the most popular modality in the
mainstream. We argue that, besides other reasons, that popularity
is mainly due to most output devices being 2D, due to the tighter
ontrol over the output’s appearance, but also due to our ability
o take in a 2D scene at a single glance while 3D content requires
n interface for navigation and exploration.
In recognition of the enduring importance of 2D scene imag-

ng, recent work adapts the concept of online scene capture to
he 2D domain, creating a variable-resolution RGB image from un-
structured image collections. Kluge et al. [4] introduce interactive,
progressive refinement imaging to bridge panoramic stitching and
handheld ‘‘fusion-style’’ digitization. Similarly, Licorish et al. [5]
use adaptive compositing of pre-registered images with variable
resolution captured with a single camera with optical zoom.
While these methods support the high-quality photometric inte-
gration of images across a wide range of object-space resolutions,
they are, however, strictly limited either to a perfectly fixed

vantage point, or to scenes with minimal depth disparity; in
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articular, they are prone to parallax-induced misalignment ar-
ifacts whenever the camera is moved within the scene to obtain
igher-resolution close-ups of objects.
In this work, we aim at overcoming this restriction by progres-

ively reconstructing an auxiliary depth map alongside an image
econstruction in the spirit of Kluge et al. [4]. This adaptively re-
ined depth map is used to compensate for parallax due to depth
isparities and further assists with self-localization of the camera.
n a departure from common approaches for scene reconstruction
rom RGB-D images, however, and more in line with image-based
endering, our method strictly decouples color data from the
oarse and potentially incomplete geometry representation. Thus,
he inherent difference in data quality between color and depth
ensors is accommodated, which greatly increases robustness of
he scene capture.

Just like online 3D scene reconstruction approaches, we take
andheld RGB-D camera streams as input. Similarly to Kluge et al.
4], our approach hierarchically fuses color differences in a sparse
aplacian pyramid. Their approach naturally achieves texture
onsistency by blending not colors, but highpass-filtered image
olor details into that Laplacian hierarchy, assisted by local input
lignment correction using optical flow. In order to also aggregate
epth values, however, our approach has to overcome several
hallenges intrinsic to range images that make them harder to
use than the typically high-quality color channels of RGB-D: (1)
ignificantly increased noise, including outliers and missing data,
ften correlated with salient features like silhouettes, (2) lower
ffective resolution, and (3) relative alignment errors with respect
o the color imager. To cope with these depth errors and artifacts,
ur progressive and adaptive depth refinement uses an explicit
epth model instead of a Laplacian pyramid to prevent noise am-
lification. Moreover, we trade the standard averaging approach,
requently used in popular online 3D geometry reconstruction
pproaches, for a progressive per-pixel voting scheme.
The resulting system enables reliable image capture of general

cenes, using an RGB-D camera where the operator first takes an
verview shot before walking into the scene to take close-ups
here added image detail is desired. By bridging between 2D and
D approaches, our system manages to mitigate limitations of ei-
her modality. Parallax-induced errors of 2D imaging approaches
re virtually eliminated, and texture inconsistencies, that to date
equire global post-optimization, yielding non-progressive and
on-interactive systems [6,7], are resolved on the fly. Last but
ot least, by anchoring the reconstruction in the initial overview
hot, camera-drift that plagues existing 3D scene reconstruction
ethods is eliminated.
We evaluate our system by comparing it against state-of-the-

rt methods in 2D progressive refinement and 3D scene recon-
truction, using high-detail indoor and outdoor data sets compris-
ng medium to large disparities. As we will show, the restriction
o 2.5-D from a fixed viewpoint affords added robustness (par-
icularly against self-localization drift, as well as backprojection
rrors near silhouettes), increased geometric and photometric
idelity, even in the presence of illumination changes, as well as
reatly improved storage efficiency, compared to more general
D reconstructions.
In summary, this paper contributes:

• Disparity-corrected adaptive image refinement that fuses
observations into a high-quality, geometrically consistent,
adaptive-resolution 2.5D image, even in the presence of
silhouettes and strong scene parallax, while retaining photo-
metric consistency.
• Progressive and local geometric and photometric optimiza-

tion for drift-free color and depth alignment.
447
• Decoupled color and depth representation, using a sparse
Laplacian for color and sparse Gaussian for depth, that strad-
dles high color fidelity with artifact-prone depth readings.
• A bespoke progressive per-pixel depth voting scheme that

outperforms conventional cumulative average weighting.

We envision that, apart from creating high-fidelity, adaptive-
esolution 2D content, our depth-enhanced representation will
nable scene exploration with realistic parallax from within a
onstrained range of vantage points, including stereo pair gen-
ration, visual surface inspection, or scene presentation within a
ixed VR viewing volume.

. Related work

Our progressive, high-quality, high-resolution RGB-D image
econstruction approach relates to both single-image refinement
rom photo collections, as well as to high-quality color reproduc-
ions for online 3D scene reconstruction methods. We now give
brief overview of the state-of-the-art in both domains.

.1. Single-image refinement from photo collections

There are many methods for combining several RGB images
nto a single photo, which commonly require very specific condi-
ions to be met. Relevant categories are panoramic mosaics [8],
hich expect images obtained by panning about the camera’s
ivot point, and photo montage approaches for combining a
et of photographs into a single composite picture [9]. Concep-
ually, these methods solve the problem of image registration,
.e., geometric consistency, and image recombination, i.e., photo-
metric consistency. However, Kluge et al. [4] have shown that
applying these kinds of methods to imagery with highly variable
object-space resolution and significant geometric and photomet-
ric distortions leads to failure, mainly due to (1) unsuccessful
matching of the input frames, (2) unsuccessful image refinement,
or (3) enforcing a panoramic mosaicing scenario with constant
resolution.

Feature-based panorama stitching approaches for unordered
data sets using, for instance, SIFT feature matching and multi-
band blending [10] can solve the challenging data characteris-
tics as demonstrated in methods like AutoStitch [11] and Au-
toPano [12] that utilize this approach. Photo Zoom [13] auto-
matically constructs a high-resolution image from an unordered
set of zoomed-in photos. This approach applies homographies for
image registration and requires global post-processing compris-
ing a recursive gradient domain fusion approach to tackle color
inconsistencies.

Progressive refinement imaging [4] tackles the problem in
a non-global fashion that allows processing large sequences of
several 100 images. Photometric consistency is achieved using
a sparsely occupied Laplacian pyramid in combination with an
image fusion approach that retains the base color defined by
an initial overview reference image. The incoming close-up im-
ages are aligned using a two-stage approach consisting of a
coarse, feature-based registration and a local refinement using
optical flow. Recent work [5] addresses adaptive compositing
of different-resolution images by computing variable-resolution
seams. The method assumes pre-registered images at different
resolutions captured with a single camera with optical zoom and
within a short period of time. As image refinement approaches for
2D RGB images intrinsically assume an almost planar (or infinitely
far away) scenery, they are restricted in handling the disparity
in non-planar scenes in closer vicinity to the camera. We will
evaluate this limitation in Section 6.
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Fig. 1. Our proposed progressive refinement imaging pipeline for 3D scenes.
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.2. Photometrically optimized 3D scene reconstruction

Our objective of adaptive and progressive image refinement
ith disparity correction is inherently linked to 3D scene re-
onstruction methods that prioritize high-quality photometric
ptimization using RGB-D image sequences. These methods im-
licitly handle disparity by fusing depth information into a full
D model.
Regarding scene geometry, high-quality photometric recon-

truction is commonly achieved via post-optimization applied
o a pre-reconstructed scene geometry using Structure-from-
otion [14,15] or KinectFusion [2,3]-like methods resulting in
runcated Signed Distance Function (TSDF) volumes [16], which
re potentially converted into meshes [6,7,16–25]. Some of these
ethods further coarsen the mesh [21,22] or even extract seman-

ics, i.e., planar or Manhattan-like representations [20,25]. Several
ethods modify the initially captured scene geometry to improve

he overall 3D geometric and photometric consistency [16,19].
Commonly, there is a significant amount of photometric incon-

istencies in a 3D-reconstructed scene, mainly due to sensor noise
nd inaccurate camera pose estimates. Photometric consistency
s commonly achieved using pose refinement for keyframes [6,
1], potentially segmenting the model and applying intensity
nd gain correction or synthesizing textures from the RGB im-
gery [7,17,18,20,24,25], or using super-resolution approaches
rojecting individual observations into the keyframes [14,15,23].
lternatively, the photometric information can be accumulated
n a voxel grid with a higher resolution than the one used for
using the geometric information [22]. Other methods aiming at
igh-quality photometric reconstruction use joint optimization
or the camera poses, the scene’s geometry and texture [19,25],
r intrinsic material properties [16,25].
While all approaches mentioned above are not interactive

r real-time capable, some methods reduce the computational
omplexity to achieve interactive framerates. Meilland and Com-
ort [26] propose a 2.5D scene representation. They fuse low-
esolution RGB-D image sequences into a single super-resolution
560×1920px RGB-D map applying a fixed super-resolution
actor (4 in this case) and deblur the result in a post-processing
tep. Lee et al.’s TextureFusion approach [27] generates a full
D model representing higher-resolved texture information us-
ng an axis-aligned parallel projection onto the implicit surface
ithin individual TSDF voxels containing the iso-surface. This
llows for real-time geometry reconstruction and texture fu-
ion using standard weighted blending methods. Their follow-up
ork [28] allows for the real-time acquisition of photometric
ormals jointly represented with texture information.

.3. NeRF and other learning-based approaches

Recently, Neural Radiance Field (NeRF) approaches have gained
uch attention, which generally learn an implicit latent repre-
entation of a radiance field captured at known camera poses [29].
here have been several attempts to enhance NeRF-like ap-
roaches towards the interactive processing of real-world RGB
448
or RGB-D data. For example, the NeRF in the wild method [30]
addresses photometric variations and transient objects in an un-
structured photo collection with known camera poses, while the
GNeRF approach [31] learns the camera pose parameters utilizing
Generative Adversarial Networks (GANs) for this task. Moreover,
neural implicit representations have been enhanced towards in-
teractive RGB-D scene reconstruction [32,33]. The recent NICE-
SLAM approach [33] achieves interactive frame rates of ∼5 fps.
Still, compared to classical 3D scene reconstruction methods, the
reconstruction quality of methods utilizing implicit neural rep-
resentations is significantly lower than for classical approaches
(see, e.g., the camera pose comparison in [33, Tab. 2]).

In summary, none of the existing methods can handle high-
quality photometric and geometric RGB-D image refinement in an
interactive progressive fashion. Most specifically, existing RGB-D
approaches do not take advantage of adaptive fusion to achieve
local photometric and geometric refinement. Conceptually, our
approach has been inspired by the 2.5D scene representation
from Meilland and Comport [26] to handle disparity properly, and
by the efficient, spatially adaptive image refinement from Kluge
et al. [4] that uses Laplacian pyramid-based image fusion for color
consistency.

3. Method overview

Our proposed progressive RGB-D image refinement pipeline is
depicted in Fig. 1. The input to our pipeline is a stream of RGB-D
images {Ii,Di} comprising color and depth images for frame
indices i. We expect the initial frame {I0,D0} to be a reference
frame that covers the region and viewing direction of interest of
the observed scene for all following frames {Ii,Di}, i > 0. Unlike
the usual 360◦ lateral scan in scene reconstruction, ‘‘progressive
refinement imaging’’ deliberately aims at a ‘‘walking closer to the
scene’’-like camera path. The overall assumption here is that by
approaching the scene, subsequent frames provide novel geomet-
ric and photometric details of the scene. Taking the reference
frame as initial model M, our approach progressively refines this
model by fusing the RGB-D stream into M, yielding a geometric
and photometric consistent RGB-D image with locally refined
resolution. The model M comprises a Laplacian color pyramid
(IM) and a depth image (DM) with locally adapted resolution
see Section 4.1 for a detailed motivation). The main components
f our pipeline are as follows (see Table 1 for a list of conventions
sed).

re-Processing: As the main objective is to improve the photo-
metric quality of the final image, we apply a frame selection
to identify the frame {Icurr,Dcurr} with the sharpest color
image within a small set of the latest consecutive input
frames. Moreover, we perform noise reduction on the depth
image to discard erroneous, e.g., flying pixels. Finally, we
register the color and the depth image by generating a
high-resolution RGB-D image. See Section 4.2 for further
details.
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Table 1
List of conventions.
Ii , Di ith input color and depth frame
Icurr , Dcurr Selected input frame of current iteration (observation)
M Model comprising components IM , DM
IM , DM Pyramidal representations of accumulated color and

depth, consisting of pyramid levels Il
M , Dl

M with level
indices l

cM Counter of observations fused into IM (per-pixel
attribute)

vM Voting counter of DM (per-pixel attribute)
T curr→M Rigid camera transformation from observation to M
WM→curr Image-space mapping between M and the observation
Icurr→M , Icurr and Dcurr warped to M’s image space
Dcurr→M
Il
curr→M Icurr→M decomposed into Laplacian levels with indices l

Lcurr , LM Level-of-refinement of Icurr→M and IM (per-pixel
attribute)

lmin Corresp. level index of warped obs. within pyramid M
roi(. . . ) Lateral boundaries of warped obs. on M (region of

interest)
FM→curr Flow field between IM and Icurr→M
slcurr Similarity score of Il

curr→M (per-pixel attribute)
KI ,KD Intrinsic camera matrices of color and depth imager
Kprev , Kcurr 2D keypoints of prev. and curr. iteration
Pprev , Pcurr 3D keypoints of prev. and curr. iteration
Vcurr , VM Vertex maps of Dcurr and DM

Fig. 2. An example layout of the model representation M. Each pyramid level
s regularly tiled with a fixed size. A tile is occupied by image data if refined
ata has been acquired; otherwise, it is unallocated. Color data is stored as
parsely occupied Laplacian pyramid in corresponding tiles across multiple
evels, whereas depth data is stored as-is, within tiles that occupy the finest
evel of the respective depth observations.

ose Estimation: The current camera pose, represented by the
rigid transformation T curr→M between the currently se-
lected frame {Icurr,Dcurr} and the model M, is estimated in
a two-stage process using sparse feature matching (SURF )
and a subsequent dense ICP (see Section 4.3).

Model Correspondence: Dependent on the current frame’s pose,
we estimate the observation’s potential to refine the model
by determining a per-pixel level-of-refinement map. This
may trigger an expansion of the model M by extending
the color pyramid and the adaptive depth representation
appropriately (see Fig. 2). For more details, see Section 4.4.
 d

449
Color & Depth Warping: Due to their different nature, noise level,
and purpose of the color and depth information, at this
stage, both modalities are processed separately by splitting
the reconstruction pipeline into two parallel strands (see
Fig. 1). Our color warping is a per-pixel remapping using
the estimated camera pose T curr→M and model depths DM
to correct for parallaxes in the current color observation
Icurr. An optical flow is then applied for local re-alignment,
resulting in Icurr→M. The depth information, however, is
warped via rendering the meshed depth map Dcurr from
the model’s camera pose, yielding the warped depth map
Dcurr→M (see Section 4.5).

olor & Depth Fusion: The color fusion is based on a cumulative
averaging scheme, refining the initial reference image by
adding details in a frequency-oriented way. A color consis-
tency check ensures the exclusion of inconsistent details.
Depth fusion is performed using a combination of blending
and replacement based on a progressive voting scheme, as
the initial model depths can be very erroneous. For further
details, see Sections 4.6 and 4.7.

4. Progressive refinement imaging for 3D scenes

Our depth-assisted progressive refinement imaging approach
for 3D scenes is based on data obtained by a commodity, hand-
held RGB-D camera such as Kinect v1, Xtion, or Kinect v2, that
provides the RGB-D stream {Ii,Di} with color images Ii ∈ R3

ith RGB intensities and depth maps Di ∈ R with camera-to-
urface-distances in meters.

.1. Model (initialization)

We expect any capture to begin with an overview shot that
efines the reference frame of the variable-resolution output
mage. Thus, the first frame, i = 0, sets a fixed reference view-
oint of the scene and initializes model M, our representation for
econstructed RGB-D data. M consists of two components, IM
nd DM, which represent the variable-resolution color image and
epth map, respectively.
Model color component IM is a multi-scale representation

ased on [4], a sparsely occupied and dynamically expandable
aplacian pyramid [34], consisting of pyramid levels I l

M, where
he level index l ∈ Z decreases with finer resolution (i.e., receive
egative indices). IM is initialized by the input color image I0,
hich serves as a reference for maintaining color consistency.
ver time, new, finer Laplacian levels I l<0

M are appended to the
ottom of the pyramid, refining the initial reference image as
ovel details are added from subsequent frames Ii>0. As not all
mage regions are captured at the same level of object-space
esolution when approaching the scene in a free-form camera
ath, IM is sparsely occupied. Therefore, each pyramid level I l

M
s regularly tiled, where a tile (1024 × 1024px) is allocated
nly if refined data was acquired. Moreover, each pixel has the
ollowing attributes: a counter cM ∈ N, representing the number
f fused observations (initialized with 1), and the model’s level
f refinement LM ∈ R, the so-far accumulated amount of detail
initialized with 0).

In addition, we introduce the model component DM, an adap-
ively subdivided depth map representation. In contrast to color,
he accumulated depth is not decomposed into band-pass filtered
aplacian levels but is stored as-is: we found that the difference
perators produce artifacts in the range data due to amplifying
oise, leading to erroneous model depths when merging frequen-
ies of different observations. DM can be interpreted as a sparsely
ccupied Gaussian pyramid that shares the pyramidal structure of
M but has tiles allocated only at the finest level (see Fig. 2). The
irst input depth map D0 initializes DM, and additionally, a voting
ounter vM ∈ R is stored as a per-pixel attribute, representing a

epth’s reliability (initialized with 1).
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.2. Input

The input to our reconstruction pipeline is a continuous stream
f color images Ii>0 and depth maps Di>0 that progressively
efine the model color IM and model depth DM.

rame selection. To avoid merging highly redundant data and to
educe processing time, we select the sharpest of 15 subsequent
rames for further processing if a maximum blur threshold εb =

.32 is not exceeded. We follow [6] and use the blur metric
rom [35], applied to the color image Ii. The selected frame of the
urrent iteration {Icurr,Dcurr} = {Ii,Di}, the current observation,
s then passed to the following pipeline stages.

re-processing. We first remove outliers from the depth map
curr by discarding pixels incompatible with their local neighbor-
ood (flying pixels). A pixel Dcurr(x, y) is considered an inlier (i.e.,

not an outlier) if at least one pixel in its 4-neighborhood differs
in depth by less than the tolerance εf = 0.1 m.

Subsequent bilateral filtering [36] of Dcurr mitigates noise,
smoothing homogeneous regions while preserving depth discon-
tinuities. As parameterization, we use σs = 2.5 for the spatial
Gaussian kernel and σr = 0.03 for the range kernel. For noisy
outdoor scenery, we increase σr to 0.15.

RGB-D registration. If Icurr and Dcurr are not pre-registered, we
register both modalities using the extrinsic transformation TD→I
= [RD→I, tD→I] ∈ SE3 between both camera coordinate sys-
tems, with 3D rotation matrix RD→I ∈ SO3 and translation
vector tD→I ∈ R3. As we prioritize high color resolution, we
break with the 3D reconstruction tradition of transforming color
images into the viewpoint of the depth camera and, instead,
project depth Dcurr onto the color camera’s image plane. While
the former only requires a simple backward remapping operation
on Icurr for each pixel position (x, y)⊤ of Dcurr using its depth
value Dcurr(x, y), the latter is more complex: we first triangulate
Dcurr (see Section 4.5 for details) and then render the resulting
triangle mesh from the position and orientation of the color
camera using TD→I and its intrinsic parameters, i.e., the principal
point (cIx , cIy )

⊤ and the focal lengths f Ix , f Iy .

4.3. Camera pose estimation

To globally align the observation with the model M, the cur-
rent 6-DoF rigid camera transformation T curr→M = [R, t] ∈ SE3,
with T curr←M = T−1curr→M, needs to be estimated.

For this, 3D scene reconstruction approaches usually perform
frame-to-model tracking by concatenating a chain of relative
poses over all consecutive frames, which suffers from accumulat-
ing a temporal pose drift. This drift is the consequence of aligning
the current frame with a proxy of the model, a rendering from
the previous, already drift-affected pose. In our case, we benefit
from the fact that refinement takes place in the reference pose,
and we always align the current frame with the model itself.
While we also use the previous pose as a prediction, it only serves
as an initialization. This makes our system robust against self-
localization drift, and we do not depend on loop closures to detect
and correct error accumulation in a chain of relative poses.

Our pose estimation is based on a two-step, coarse-to-fine
approach. First, we align the current frame with the ‘‘current’’ one
of the previous pipeline run by searching for and matching sparse
correspondences using scale-invariant, speeded-up robust features
(SURF) [37]. A dense iterative-closest-point (ICP) algorithm [38,39]
is then initialized with the resulting pre-alignment, estimating a
final, fine-scale alignment T curr→M between the current frame
and the model M.
450
Pre-alignment using sparse keypoints. As we expect potentially
large displacements between the current and the reference pose
(see Section 4.2), we estimate a coarse pre-alignment using sparse
photometric correspondences. First, a set of photometric SURF
features with 2D keypoint locations Kcurr ∈ R2 are detected in
the current color image Icurr, using the Hessian feature threshold
εh = 1000 and four SURF octaves with four scales in each octave.
These features are then matched against the feature descriptors
of keypoints Kprev ∈ R2 of the previously selected ‘‘current’’ frame
processed by our pipeline using RANSAC [40].

The keypoint sets Kcurr and Kprev are pruned by filtering po-
tential mismatches and error-prone keypoints. We pre-filter key-
point matches by applying Lowe’s ratio test [41]. A keypoint
is tested for its integrity by comparing its two best matches
using their distance ratio. If both matches are similarly rated, the
keypoint is discarded, with the intuition that a correct match is
unique. We use a ratio threshold εr = 0.675.

Additionally, we filter keypoints Kcurr in the vicinity of un-
reliable depths. While 2D keypoint locations are based on high-
resolution color imagery, their 3D locations rely on coarse depth
maps, which is highly prone to error at inaccurate depth discon-
tinuities and surfaces with a flat angle to the camera. Therefore,
we compute a binary mask G ∈ Z2 of inhomogeneous areas:
first, we generate morphologically eroded and dilated depth map
versions Dmin

curr and Dmax
curr , respectively, using a 5 × 5 box-shaped

structuring element. Then, we exclude pixels by thresholding
Ddiff

curr = Dmax
curr − Dmin

curr with differences that exceed εd = 0.03 m.
Finally, we back-project 2D keypoint locations Kcurr using their

corresponding depths in Dcurr and the input camera’s intrinsic

matrix K curr =

(fx 0 cx
0 fy cy
0 0 1

)
to get the 3D point set

Pcurr = Dcurr(Kcurr)K−1curr (Kcurr, 1)⊤∈ R3 . (1)

Knowing the correspondences between Pcurr and Pprev by the
feature matching process, we are able to compute a rigid trans-
formation T curr→prev by minimizing the MMSE [42]. This results in
the coarse pre-alignment T pre

curr→M = T curr→prev ◦ T prev→M, using
the previous pose estimation.

Final alignment using dense correspondences. For the final trans-
formation T curr→M, we directly align the current frame with
the model M itself on a dense, fine-scale basis using the pre-
alignment T pre

curr→M as initialization. This is done by performing
a dense Colored ICP [43], which we summarize in the following.
Colored ICP optimizes for photometric consistency in addition to
geometric consistency, which is formulated as the joint objective

Ehybrid = (1− σICP)EI + σICPED , (2)

with EI and ED being the photometric and geometric least-
squares objectives. We follow Park et al. [43] and set σICP = 0.968.
ED is formulated as the traditional point-to-plane error metric,

ED(T curr→M) =
∑

(p,q)∈R

⟨
T curr→M Vcurr(q)− VM(p) ,NM(p)

⟩2 , (3)

between the current input depth map Dcurr and model depth
DM, back-projected to camera space, i.e., Vcurr and VM (see
ection 4.5). The model’s normal map NM is determined from
entral-differences of VM.
The photometric objective EI is expressed as the squared

ifferences of intensities

I(T curr→M) =
∑ (

Icurr(q)− Icomp
M (p)

)2 , (4)

(p,q)∈R
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Fig. 3. A one-dimensional graphic representation of the level-of-refinement
maps LM and Lcurr . The model’s accumulated level of refinement (blue) is
shown after the camera has been moved centrally towards the scene, with
details accumulated up to level -2.2. The current observation (red) offers a higher
object-space resolution (lower corresp. level), where the per-pixel gain in visual
detail is colored in green (see ∆curr in Eq. (12)). Its lateral boundaries within
the model are xmin and xmax (region of interest), the minimum pyramid level is
lmin = −3.

between the current input color image Icurr and Icomp
M , which is

the re-composed model color image from the Laplacian pyramid
IM.

The dense correspondence set R = {(p, q)} is determined via
projective data association, that is, projecting each pixel in Dcurr
with location q ∈ N2 onto DM, getting the corresponding pixel
location

p = π
(
KM T curr→M Dcurr(q)K−1curr (q, 1)

⊤
)
∈ R2 , (5)

with K curr and KM being the camera’s intrinsic matrices of the
current frame and the model, and π(x, y, z) = (x/z, y/z)⊤, the
de-homogenization. We use the Euclidean distance threshold εdist
and angle threshold εangle = 45◦ as compatibility criteria to
prune potential correspondences. We set εdist = {0.1 m, 0.065 m,
0.03 m} for a three-level coarse-to-fine ICP and we soften the
criterion for noisy outdoor footage to εdist = {0.3 m, 0.165 m,
0.03 m}.

4.4. Model correspondence

The correspondence between the observation and the model
refers to the region of interest in the model M affected by the
current frame, and the observation’s level of refinement, represent-
ing the observation’s potential to refine M. Fig. 3 illustrates these
properties with an example.

The current region of interest roi = (xmin, xmax, ymin, ymax), i.e.,
the observation’s lateral boundaries within model M, is calcu-
lated by the forward projection of Dcurr onto DM using Eq. (5).

The observation’s level of refinement refers to the spatial
sampling rate that is inverse-proportional to distance, i.e., the
sampling rate increases the closer the camera is moved to the
scene compared to the reference viewpoint. Thus, we determine
the level-of-refinement map Lcurr ∈ R as the corresponding pyra-
mid level in M per pixel. By back-projecting and transforming
each model depth of roi(DM) into the camera space of the current
observation, we get its distance to the current frame’s camera
plane by extracting its z-component. The scale factor between
both depths is then mapped to a pyramid level index, where
the sampling rate for each level increases by one octave. The
(fractional) number of octaves between both distances is given
by

Lcurr(x, y) = log2

(
T curr←M DM(x, y)K−1M (x, y, 1)⊤

)
z

DM(x, y)
∈ R , (6)

where (·)z is the z-component of a 3D point. We use the accumu-
lated model depths for this estimate, as they are more accurate,
451
complete, and reliable than observation depths. Here, a gain in
level of refinement, i.e., Lcurr(x, y) ≤ LM(x, y), indicates the ob-
servation’s ability to contribute superior information for refining
the model by updating its data in the fusion stage (Section 4.7).

We further determine the overall minimum pyramid level
index lmin = ⌊min (Lcurr)⌋ ∈ Z. If this level is beyond the current
level boundaries of M, we expand the model as follows: a new
level of unallocated tiles is appended to the bottom of Laplacian
pyramid IM. For the sparsely occupied Gaussian pyramid DM,
ll tiles affected by the region of interest are up-sampled to lmin,
sing nearest-neighbor interpolation to avoid introducing flying
ixels. The model’s counters cM, vM and the accumulated level-

of-refinement LM inherit their values from coarser levels on
demand, as needed during fusion.

4.5. Parallax-aware warping

Color warping. To allow a fusion with the model, a perspective
warping of the color image Icurr into the model’s image space is
performed. In contrast to [4], which estimates a homography by
assuming a (quasi) planar scenery, we, instead, have to rely on
depth values for a disparity-corrective mapping between both im-
age spaces. Therefore, we calculate the pixel mapping WM→curr ∈

R2 that relates model to observation locations

WM→curr(x, y) = π
(
K curr T curr←M DM(x, y)K−1M (x, y, 1)⊤

)
, (7)

with (x, y) ∈ [xmin, . . . , xmax] × [ymin, . . . , ymax]. That is, each reg-
lar lattice grid position within roi(M) is mapped to an irregular
ub-pixel coordinate in the current frame using refined model
epths DM and camera transformation T curr←M.
The color image Icurr is then warped to M using a back-

ard remapping Icurr→M(x, y) = Icurr
(
WM→curr(x, y)

)
, i.e., a

esampling of Icurr at sub-pixel positions WM→curr using bi-linear
nterpolation. As we will fuse color using Laplacian pyramids (see
ection 4.7), we warp Icurr to the finest corresponding model level
l=lmin at level index lmin.
Finally, by subtly smoothing Icurr→M at depth discontinuities,

e obtain a natural color transition between foreground and
ackground objects instead of a binary one. For that, a Gaussian
ernel with radius rG = 2px is used.
Note that warping the 2D image Icurr inevitably leads to in-

onsistencies with the model in occluded regions, which are
ddressed in the outlier removal stage (Section 4.6).

epth warping. Changing the perspective of a 2.5D depth map
equires retrieving the underlying 3D geometry represented by
he discretized range values. We therefore convert Dcurr to a
olygon mesh by computing a vertex map Vcurr(x, y) = Dcurr(x, y)
−1
curr(x, y, 1)

⊤, and then, neighboring vertices Vcurr(x, y)⊤, Vcurr(x+
, y)⊤, Vcurr(x, y+ 1)⊤ and Vcurr(x+ 1, y+ 1)⊤ are triangulated by
hoosing the diagonal with the shorter length. We omit triangles
ith edges longer than εd = 0.03 m to open the mesh at discon-
inuities. Finally, we obtain the warped depth map Dcurr→M by
endering the mesh as seen from the model’s camera, by setting
he view matrix to T curr←M and the viewport to roi, with the
esolution of level lmin.

.6. Local color consistency

After aiming for global consistency in the camera alignment
tage (Section 4.3), we can now seek local consistency as the
arped observation and the model share the same image space.
his is done by matching the warped input frame Icurr→M to the
eferenceM on a per-pixel basis, using a two-step approach: first,
curr→M is re-aligned locally by estimating a per-pixel displace-
ent w.r.t. M. Second, pixels that are still inconsistent with the
odel are classified as outliers.
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Local re-alignment. We follow [4] and compute a dense Optical
Flow between grayscale variants of Icurr→M and Icomp

M using [44].
he resulting flow field FM→curr provides the sub-pixel lateral

motion to reduce local misalignments.
To account for various input scales, we use an adaptive num-

ber of scale levels for the optical flow algorithm, i.e., we use−lmin,
he number of pyramid levels between model level l = 0 and lmin.
e then re-align Icurr→M w.r.t.M by applying the backward flow

of FM→curr.

Local outlier removal. To avoid merging inconsistent color data,
the warped color frame is searched pixel-wise for geometric
discrepancies to detect mismatches that could not be re-aligned
or regions that cannot be incorporated, e.g., due to occlusion.
Inspired by [4], we detect outliers on band-pass filtered Laplacian
levels, while explicitly omitting the top (Gaussian) level l = 0
to be resilient to photometric deviations due to local illumina-
tion changes. We, however, use a different outlier classification
scheme than [4].

In this pipeline stage, the main challenge is to correctly classify
novel details as inliers, even if they create discrepancies with the
model. By comparing a Laplacian decomposition of the warped
frame, I l

curr→M, with the Laplacian model pyramid I l
M, we are

able to exploit that true outliers are geometrically inconsistent
across all levels, whereas novel details are in a mismatch on the
finest level(s) only (see Fig. 4). Thus, we determine a per-pixel
similarity score slcurr ∈ R w.r.t. M separately for each Laplacian
level l < 0, starting with the coarsest Laplacian level l = −1:

sl=−1curr = SSIMC,S (I l=−1
curr→M, I l=−1

M
)
, (8)

where SSIMC,S
∈ R is the similarity metric given in Eq. (10).

Since we can only distinguish outliers from novel details on
coarser levels, where these frequencies are already present in the
model, we then propagate the similarity score to the finest level
l = lmin by retaining high similarities from coarser levels:

slcurr = max
(
SSIMC,S(I l

curr→M, I l
M
)
, [sl+1curr]↑2

)
, (9)

where [. . . ]↑2 indicates an up-sampling by one octave. Fig. 4
illustrates this scheme, showing the computation of the similarity
score and the effect of our propagation strategy.

As similarity metric SSIMC,S, we use a variant of SSIM [45]
suitable for being applied to Laplacian images. The original SSIM
offers a structural similarity index measure between two intensity
images X ∈ R and Y ∈ R, with SSIM ∈ [−1,+1] and can be
broken down into three independent components: a comparison
for luminance, contrast, and structure. Since we apply the metric
on Laplacian levels, we discard the luminance component:

SSIMC,S(X, Y ) = max

([
2µXµY
2 2

]β [
σXY

σ σ

]γ

, 0

)
, (10)
µX + µY X Y
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comprising the product of contrast and structure similarity. µX ,
Y are the means of X and Y within a local window; σ 2

X , σ 2
Y

the variances; and σXY the covariance. We set the weighting
parameters to β = 1, γ = 1 and clamp the result to ensure
SSIMC,S

∈ [0, 1].
While the contrast comparison serves a similar purpose as the

error metric of [4], we additionally compare the local structure
instead of individual pixels. The local window size is set adap-
tively and increases according to finer pyramid levels l, starting
with radius ro = 1px.

Finally, we classify pixels (x, y) on levels l as outliers if their
similarity score slcurr(x, y) falls below εo = 0.15. In the following
fusion stage, slcurr ∈ [0, 1] is further used to weight inliers
ccording to their achieved score (see Eq. (11)).

.7. Fusion

In the final stage of the pipeline, the current frame {Icurr→M,
Dcurr→M} is fused with the current model {IM,DM}.

olor fusion. Conceptually, our frequency-oriented color fusion
pproach follows Kluge et al. [4]. That is, we merge the Laplacian
evels of the color pyramids while retaining the base color of the
aussian level and, thus, enable progressive refinement without
equiring local or global optimization for color harmonization.
owever, our approach designed for fusing warped observations
f 3D scenes requires a different accumulation
cheme.
The accuracy and reliability of the warped color Icurr→M is

rimarily limited by the underlying depth data due to inaccurate
r even false depth estimates captured at low(er) resolution.
hus, in contrast to Kluge et al. [4], which is based on a planar
cene and a replacement strategy, we apply a blending scheme of
ultiple observations, as each single, warped observation is not

eliable enough by itself.
Our blending scheme only fuses inlier pixels (x, y) with a finer

evel of refinement, i.e., if Ll
curr(x, y) ≤ Ll

M(x, y), to prevent
oarser observations from degrading the model. We apply

l
M ←

I l
M + wcurrslcurrI

l
curr→M

1+ wcurrslcurr
, (11)

o levels l ∈ [lmin, . . . ,−1] and, thus, update all corresponding
aplacian levels with data from the new observation. Here, slcurr ∈
[0, 1] is the score determined in Section 4.6, which we use to
lower the contribution of less reliable input color. Apart from that,
the weight wcurr applied to the observation is computed as

wcurr =∆curr +
1
c lM

,(⏐⏐ l l
⏐⏐ ) (12)
with ∆curr = min Lcurr − LM , ∆max ,
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Fig. 5. Fusion of erroneous pixels at depth discontinuities for a set of example depth maps with foreground (black) and background depths (white). At frame 0,
the model is initialized with the coarse observation depths (left column). At subsequent frames, the current observation (middle row) is fused with the model of
the previous frame. (a) Top row: Cumulative average, where the pixel’s counter is successively incremented. Blending of incompatible pixels results in flying pixels
between the foreground and background depth. (b) Bottom row: Using our voting strategy, the model depths progressively approach the correct depths (shown in
frame 4 for the observation) by replacing pixels at depth discontinuities. The pixel’s voting counter is decremented (Eq. (16)) if the observation and its corresponding
model depth are incompatible (highlighted in red); otherwise incremented. In case too many observations voted against a model pixel, i.e., a pixel’s voting counter
becomes negative, its depth is replaced by the current observation (highlighted in green), and the counter is reset to 1 (Eq. (17)).
t
e

where ∆curr represents the gain in level of refinement (colored
green in Fig. 3), c lM is the model’s counter, and Ll

curr is the
Gaussian decomposition of Lcurr. To reflect the amount of detail
blended into the model so far, the model’s level of refinement,
Ll
M, is updated analogously to Eq. (11) as a weighted average,

using

Ll
M ←

Ll
M + wcurrslcurrL

l
curr

1+ wcurrslcurr
, (13)

while the counter is incremented by

c lM ← c lM + 1 . (14)

With ∆curr = 0, Eq. (12) reduces to the basic blending scheme in
incremental scene reconstruction, a cumulative average of sam-
les [3,46], i.e., the observation’s weight w = 1/cM is decreasing
ontinuously as the model’s counter cM ∈ [1, . . . ,∞] is in-
remented with each observation. In refinement imaging, this
veraging scheme potentially prevents details captured by later
bservations from getting into the model. This happens specif-
cally when many (early) observations with less details force
p the weight. Our approach, therefore, takes the gain in level
f refinement

⏐⏐Ll
curr − Ll

M

⏐⏐ into account and combines it with
he traditional confidence counter, defined by the number of
bservations (1/cM). To limit the maximum contribution of a
ingle observation and, thus, to prevent the model from being
eplaced, we clamp ∆curr at ∆max = 0.1.

epth fusion. The imperfect nature of depth images requires a
ifferent way of fusion, as no reliable initial reference depth is
vailable, which could be used for (additive) refinement. Instead,
naccurate depths need to be corrected and false values have to
e detected and replaced.
We filter observation depths Dcurr→M that are incompati-

le with the model DM, using the depth tolerance threshold
D − D | ≤ ε as compatibility criterion. We then blend
M curr→M d

453
compatible pixels on pyramid level lmin by the weighted average

DM ←
vMDM + Dcurr→M

vM + 1
, (15)

o improve the accuracy of model depths DM over time. How-
ver, in the case of initializing DM(x, y) with a false value, fur-

ther observations will fail the compatibility test, inhibiting any
refinement.

Therefore, we propose an incremental voting strategy to find
a suitable model value progressively (see Fig. 5). With the inten-
tion that each new observation votes either for or against the
reliability of a model pixel’s depth, we interpret vM ∈ R as a
voting counter. For each fusion that failed due to incompatibility
with the model, we decrease a model pixel’s counter, yielding the
following counter update:

vM ←

{
vM − e−(vM/σ )2 , if |DM − Dcurr→M| > εd .
vM + 1 , otherwise .

(16)

Here, e−(vM/σ )2 is used to control the amount of decrease in case
of an incompatible observation. Our approach ensures a stable
result once a model depth has been consolidated, while it quickly
discards less reliable model values in favor of a more frequently
observed depth value. For all our experiments, we set σ = 10.

In case a pixel’s voting counter falls below 0, i.e., if vM ≤ 0,
its depth value is replaced and the counter is reset:

DM ← Dcurr→M , vM ← 1 . (17)

Fig. 5 illustrates this voting scheme, showing the resulting fusion
compared to a cumulative average. In the supplementary mate-
rial, an alternative visualization is given, demonstrating the effect
of the resulting weighting.

4.8. Final output

After the final frame of the RGB-D input sequence has passed
the pipeline stages described in Sections 4.2 to 4.7, the model
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yramids IM and DM are recomposed to produce the final
refined RGB-D image Icomp

M and Dcomp
M from the fixed viewpoint

TM. That is, the Laplacian color pyramid IM is recomposed by
upsampling and summing all Laplacian levels I l

M. For the model
depth DM, all tiles are sampled up to the finest pyramid level
existing in the model M. Finally, after combining all tiles to
a full image, {Icomp

M , Dcomp
M } is a refined version of the initial

frame {I0,D0}, with a resolution up to a multiple of the initial
resolution. Theoretically, by using the entire operating range of
8.0m to 0.5m for a typical RGB-D camera such as Kinect v2, the
object-space resolution can be increased by a factor of 16, reach-
ing several hundred megapixels for the final reconstruction (e.g.,
530.8MP when using a 2.1MP image sensor). In our evaluation,
however, a scale factor of 6 to 10 was reached for the outdoor
data sets (see Section 6.1).

5. Implementation

Our reconstruction pipeline is implemented in C++, incor-
porating basic image processing operations from the OpenCV
library. The pre-processing, outlier classification, and dense ICP
are implemented on the GPU using CUDA. We use OpenCV’s
SURF feature detection for the camera pre-alignment, whereas
Farnebäck’s optical flow variant [44], provided by OpenCV, is used
for local re-alignment. For rendering the input depth map from
the reference pose, OpenGL is used by exploiting z-buffering.
Lastly, the fusion of color and depth data is performed in image
space using CUDA operations.

Although model color and depth share the same hierarchical
structure (see Fig. 2), they are stored separately in two sparsely
occupied image pyramids, each with additional layers for the
associated attribute maps (e.g., the counter). Each pyramid level
comprises a 2D array of pointers referring to the allocated image
tiles currently in use.

To improve the computational efficiency of our online ap-
proach towards real-time applications, ideally, concurrent kernel
scheduling should be applied to overlap data transfers and other
operations by performing multiple CUDA operations simultane-
ously, which has yet to be realized in our current implementation.

6. Results

6.1. Data sets

Fig. 6 shows the reference images of the ten data sets we
use for our evaluation. Besides the Fountain and the LongOffice-
Household data sets, taken from Zhou and Koltun [6] and Sturm
et al. [47], respectively, we created the following indoor as well as
outdoor data sets that comprise medium to large disparities and,
partially, very challenging situations in terms of reflective objects,
fine scene details and high noise levels (dark/black objects). For
each data set, scalemax denotes the maximum scale factor of
object-space resolution with respect to the reference image that
is featured by the input data (scalemax = 2.46 for Fountain and
calemax = 2.77 for LongOfficeHousehold).
offeeTable: This indoor scene comprises highly reflective ob-
jects, e.g., a coffee machine and a black metal box (scalemax =

4.38).
BooksGlobe: An indoor scene that contains several books, a blan-

ket, and a globe arranged on a couch/bed (scalemax = 2.25).
VillageModel: An indoor scene that comprises a set of model

houses arranged on a table in front of a display screen. This
scene comprises very small, dark, and mainly diffuse objects
(scalemax = 3.89).

BrickWall: An outdoor scene with low depth variations that dis-
plays mainly diffuse stone colors (scale = 6.96).
max
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Table 2
Data set specifications. The data sets are acquired using the Asus Xtion Pro Live
(pre-registered RGB-D: 640 × 480px) and the Kinect v2 (pre-registered RGB-D:
1920 × 1080px), comprising ’# frames’ frames, where ’# fused frames’ frames
are selected by the specific method to be fused into the final result.

Resolution (px) # frames # fused frames

Kluge20 Fu21 Niessner13,
Lee20, Ha21

Ours

Fountain 640 × 480 1086 – 36 1086 59
LongOfficeH. 640 × 480 2488 – – – 31
CoffeeTable 1920 × 1080 2778 – 28 2778 186
BooksGlobe 1920 × 1080 370 – 5 370 26
VillageModel 1920 × 1080 2472 – – 2472 162
BrickWall 1920 × 1080 7420 498 – 7420 496
Memorial 1920 × 1080 4037 356 – 4037 266
Statue 1920 × 1080 1515 – – 1515 96
Cannon 1920 × 1080 677 – – 677 43
FlowerBed 1920 × 1080 728 – – 728 48

Memorial: This outdoor data set comprises mainly diffuse objects
with medium disparities (scalemax = 9.71).

Statue: An outdoor data set with statues at a fountain with large
disparities and highly reflective water (scalemax = 5.70).

Cannon: This outdoor data set contains a cannon (glossy, black)
and large disparities (scalemax = 6.23).

FlowerBed: An outdoor scene of an arrangement of flowers with
very unreliable depth data due to semi-transparent leaves and
very fine details (scalemax = 6.10).

We display each reconstruction from the initial pose and zoom
into a challenging sub-region as insets. We present all images in
high resolution in the supplementary material. Table 2 summa-
rizes the main data set specifications.

6.2. Ablation study

In this section, we evaluate the performance of our progressive
refinement imaging using depth-assisted disparity correction by
replacing core concepts of our pipeline with earlier approaches.
We show the resulting effects in Fig. 7 for the CoffeeTable data set
and in Fig. 8 for the VillageModel data set.

Outlier classification scheme. Fig. 7(a) shows the outlier removal
to achieve local color consistency from Kluge et al. [4], and
Fig. 7(d) depicts the result when applying our new SSIM-based
Laplacian scheme presented in Section 4.6. The result obtained
with our outlier removal scheme yield further color refinement,
specifically at object borders with less reliable warped color
information, avoiding misclassifying novel details as outliers.

Accumulation strategy for color fusion. In Fig. 7(b), the pyramidal
color replacement strategy proposed by Kluge et al. [4] is shown,
while Fig. 7(d) depicts the result obtained by our novel blending
method described in Section 4.7. Comparing both results, we can
see that the replacement scheme leads to strong artifacts at object
boundaries and other areas with unreliable depth data, causing
the reconstruction to suffer from noise and distorted colors. In
contrast, our approach results in a geometric and photometric
consistent reconstruction.

Weighting scheme for color fusion. Fig. 7(c) shows the color fusion
result using a conventional cumulative averaging scheme used by,
for instance, Newcombe et al. [3], and Fig. 7(d) gives the result
when applying our new approach that takes the gain of visual
detail into account, as described in Section 4.7. We observe that
the classical weighting scheme is not able to incorporate as much
color detail as our scheme, leading to a more blurred result.
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Fig. 6. The unrefined reference images (initial frames) of the data sets.
Fig. 7. Ablation study for color reconstruction. (a) Our approach combined with the Laplacian outlier removal scheme from Kluge20 [4]. (b) Our approach combined
ith the Laplacian color replacement strategy for color fusion from Kluge20 [4]. (c) Our approach combined with the conventional cumulative average weighting,
.g., [3]. (d) Ours with the proposed SSIM-based outlier removal scheme and the proposed color blending with detail gain-based weighting.
Fig. 8. Ablation study for depth reconstruction. (a) Our approach, but with the
conventional cumulative average weighting, e.g., [3]. (b) Ours with the proposed
depth voting scheme. Depths are shown using a Parula colormap ranging from
1.5m to 2.75m.

Voting strategy for depth fusion. The effect of using our novel
voting scheme for depth values presented in is given as a depth
map in Fig. 8(b), compared to the application of a conventional
depth averaging of compatible pixels as used by, for instance,
Newcombe et al. [3], depicted in Fig. 8(a). The strength of our
depth voting scheme gets specifically apparent at depth discon-
tinuities, i.e., object silhouettes, where our approach refines the
initial depths of the coarse object boundaries by detecting and
replacing erroneous measurements.

6.3. Qualitative comparisons

As our approach provides a high-quality image refinement
method robust to disparity and occlusions and, thus, aims at
filling the gap between interactive 2D image refinement meth-
ods, online 3D reconstruction techniques with high-resolution
textures, and offline texture optimization methods for 3D scene
reconstruction, we compare our approach to the following state-
of-the-art techniques in these contexts.
Kluge20: 2D interactive progressive refinement imaging [4] for

(almost) planar scenes with only small amounts of disparity.
455
Niessner13: The online 3D scene reconstruction method using
voxel hashing from Niessner et al. [48]. This approach is used
by most of the color optimization methods, such as [6,7,19].

Lee20: The online 3D scene reconstruction method TextureFusion
from Lee et al. [27] stores sub-voxel textures in the TSDF voxel
grid cells containing the scene surface.

Ha21: The online 3D scene reconstruction method NormalFusion
from Ha et al. [28], a follow-up work of [27], additionally ob-
tains photometric normals, enabling geometric enhancement.

Fu21: The offline texture optimization proposed by Fu et al. [7].
We generate the initial scene reconstruction and camera poses
using VoxelHashing [48] and select a subset of input frames
based on the angle and distance between corresponding poses,
as proposed in [7].

Ours: Our proposed method as described in Sections 3 and 4.

Comparison to 2D image reconstruction. We compare our ap-
proach to the 2D image reconstruction method Kluge20 on the
BrickWall and the Memorial data sets, which comprise a low to
moderate amount of disparity; see Fig. 9.

For the BrickWall data set, Kluge20 works robustly and yields
quite good results. However, for the Memorial data set, the lim-
itations of the geometric alignment using a homography lead
to strong geometric ghosting artifacts, while our method is able
to reconstruct the silhouettes and captures more details than
Kluge20. Note that Kluge20 does not generate results on any of the
other data sets due to alignment failures. In the supplementary
material, we additionally compare our method to the 2D photo
stitching method Autopano [12], which is based on Brown et al.’s
AutoStitch [10,11].

Comparison to online scene reconstruction. We reconstruct all data
sets using the online 3D scene reconstruction approaches Niess-
ner13 (VoxelHashing), Lee20 (NormalFusion), and Ha21 (Texture-
Fusion) as a comparison to our method; see Fig. 10. To achieve the
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Fig. 9. Comparison with the 2D method from Kluge20 [4]. See also Fig. 6 for a
omparison with the unrefined reference image.

Table 3
Voxel sizes (mm) for the data sets, used by the competing methods.
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Niessner13 4 4 4 4 4 4 4 4 4
Lee20 4 4 4 4 8 5 4 4 6
Ha21 4 6 4 8 25 9 10 11 14

ost detailed results, we used the smallest possible voxel size to
uccessfully process a specific data set with 24GB of GPU mem-
ry, if the reconstruction failed with the default size of 4 mm;
ee Table 3. Note that Ha21 generates photometric normals as
dditional per-voxel attribute maps besides the texture patches,
hich requires a significant amount of memory, depending on
he scene. The table with all hyper-parameters of the competing
ethods is given in the supplementary material.
All methods successfully reconstruct all scenes, but due to

he nature of the 3D scene representation, 3D scene reconstruc-
ion methods potentially produce holes or incomplete color re-
onstructions. We observe further scene-dependent deficiencies,
hich we exemplify in the following. Niessner13 exhibits, for ex-
mple, local geometric inconsistencies (Fountain, BooksGlobe, Vil-
ageModel), as well as smoothed-out photometric reconstructions
CoffeeTable, Statue), but is partially able to reconstruct texture
etails (Cannon). Lee20 partly reconstructs sharp details (Foun-
ain) and silhouettes (Memorial), but also produces very blurry
esults (CoffeeTable, BooksGlobe, Cannon). Likewise, Fu21 can par-
ially reconstruct sharp details (Fountain, BooksGlobe) while deliv-
ring blurry results in other cases (VillageModel, Cannon).
Besides the FlowerBed data set, our method yields high-quality

esults regarding geometric and photometric consistency. Our
ethod can successfully refine the reference image in geomet-

ically homogeneous regions as well as at object silhouettes, and
uppresses locally misaligned information (e.g., due to erroneous
nput range values).

The FlowerBed data set is very challenging, as it comprises
any detailed silhouettes for which the range maps are not
etailed and reliable enough. This leads to a large amount of
utliers and to a comparably small amount of details that pass the
utlier test and get incorporated into the reconstructed RGB-D
mage.
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In addition, we provide a quantitative comparison using a
ynthetic data set with ground truth in the supplementary mate-
ial. We evaluate all methods by employing different error met-
ics, both for the refined color and depth, revealing a significant
dvantage of our method.

omparison to offline optimization. Fig. 11 shows the results of
omparing our method to the offline, global post-optimization
pproach Fu21 for the Fountain, CoffeeTable, and BooksGlobe data
ets. Note that the Fountain data set footage comprises only
limited amounts of close-ups of the specular tilework. For all
three data sets, Fu21 delivers geometrically good results, but
there are photometric inconsistencies. Our method yields recon-
structions with significantly improved photometric consistency,
as the reference frame’s illumination condition is retained. In the
supplementary material, we further demonstrate the robustness
of our pipeline against illumination changes and differences in
white-balance or auto-exposure in the input footage.

Comparison of reconstructed depths. While our main output is a
high-quality color reconstruction, the resulting depth map may
have its uses (e.g., for stereo image generation). Therefore, we
compare our depth map reconstruction to the scene reconstruc-
tions of Niessner13, Lee20, and Ha21 by rendering the surface from
the same viewpoint. The results of this experiment are shown in
Fig. 12 for the VillageModel data set. While all approaches show
competitive results, our method provides more consistent object
silhouettes and fewer holes.

6.4. Robustness against self-localization drift

To demonstrate the robustness of our method against drift
effects in camera tracking, we use the 360◦ data set LongOffice-
Household, comprising 2488 RGB-D frames. Our system processes
the first 326 frames, i.e., it selects 13 frames to be incorporated
into the model. Later on, when the camera turns closer to the ref-
erence pose again, frames 1771–2488 are processed, from which
18 frames are selected. Fig. 13 shows the refinement before ex-
iting the reference viewpoint (left) and the final refinement after
re-entering the reference viewpoint (right), yielding a sharper
reconstruction.

6.5. Performance

All experiments are performed using an AMD Ryzen Thread-
ripper 3970X with 128GB main memory and an NVIDIA GeForce
RTX 4090 with 24GB GPU memory. Table 4 states the timings
for a complete reconstruction process of each method and the
required peak memory. For Niessner13, Lee20 and Ha21, we show
the memory consumption using the minimal amount of pre-
allocated data structure elements, determined using two passes.
Note that in a true online scenario, this is not known beforehand,
and thus, more memory would have been pre-allocated. Since
the offline, post-processing method Fu21 requires a large amount
of processing time, up to several weeks (CoffeeTable), only three
data sets are shown for this method; we stopped the Statue and
FlowerBed data sets after ten and six days, respectively, when only
the first of 30 iterations had been completed. For our method, the
average frame rate over all data sets is 1.0 fps, with a minimum
frame rate of 0.5 fps for the Statue data set and a maximum frame
rate of 2.1 fps for the Fountain data set.
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Fig. 10. Comparison with online scene reconstruction methods. See also Fig. 6 for a comparison with the unrefined reference image.
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Table 4
Required resources.

Total processing time (h:min:s) Peak total main memory consumption (GB) Peak total GPU memory consumption (GB)

Kluge20 Niessner13 Lee20 Ha21 Fu21 Ours Kluge20 Niessner13 Lee20 Ha21 Fu21 Ours Kluge20 Niessner13 Lee20 Ha21 Fu21 Ours

Fountain – 0:00:11 0:00:27 0:00:43 142:19:20 0:00:28 – 1.78 7.01 9.55 7.60 1.14 – 2.16 6.18 13.47 0.36 2.77
LongOfficeH. – – – – – 0:00:18 – – – – – 1.13 – – – – – 1.86
CoffeeTable – 0:01:03 0:02:35 0:05:13 483:25:02 0:03:38 – 4.88 60.23 60.38 13.90 1.32 – 3.67 11.78 20.80 0.25 9.46
BooksGlobe – 0:00:16 0:00:20 0:00:40 23:13:39 0:00:28 – 1.77 10.96 12.57 4.40 1.27 – 3.24 7.20 12.58 0.51 4.99
VillageModel – 0:00:56 0:02:23 0:04:49 – 0:04:01 – 4.54 53.35 54.21 – 1.37 – 3.87 12.48 20.46 – 6.48
BrickWall 0:08:58 0:03:15 0:07:55 0:13:17 – 0:10:21 1.64 21.56 122.04 123.07 – 1.44 8.24 9.55 22.19 19.12 – 11.61
Memorial 0:04:47 0:01:45 0:03:43 0:08:56 – 0:05:04 1.71 10.36 85.12 86.15 – 1.33 7.54 5.26 21.29 22.49 – 8.47
Statue – 0:00:39 0:01:32 0:02:51 – 0:03:10 – 5.06 35.42 35.21 – 1.48 – 4.60 16.49 19.63 – 12.33
Cannon – 0:00:16 0:00:44 0:01:03 – 0:01:01 – 3.25 18.74 18.51 – 1.41 – 4.86 21.41 20.21 – 10.79
FlowerBed – 0:00:20 0:00:43 0:01:07 – 0:00:55 – 4.57 19.62 19.48 – 1.34 – 5.87 21.71 20.12 – 8.18
Fig. 11. Comparison with the offline, post-processing approach Fu21 [7]. See
also Fig. 6 for a comparison with the unrefined reference image.

6.6. Limitations

In order to enable refinement imaging with parallax effects
in the scene, our method primarily depends on depth values
to guide the alignment and disparity-corrective warping of the
color information. However, in contrast to high-quality color data,
depth images exhibit lower effective resolution and significantly
increased noise, often correlated with visually important features
like silhouettes. While our approach is explicitly designed for
resilience against these low-quality characteristics, it is ultimately
limited by the depth data provided.

Our method is not able to reliably refine RGB-D data sequences
containing too fine-grained depth variations and silhouettes, re-
sulting in too much unreliable depth information and outliers to
be used for disparity correction. This is particularly evident in
the FlowerBed data set, evaluated in Section 6.3, which comprises
very detailed silhouettes in the color data for which the depth
data’s reliability is insufficient. Even in homogeneous depth areas,
range estimations may exhibit increased noise and erroneous
values, e.g., on specular surfaces (such as the coffee machine in
the CoffeeTable data set). Since this directly affects the accuracy
of the color warping, the local realignment may not be sufficient.

Furthermore, our pipeline maintains photometric and geomet-
ric consistency with respect to a reference image that needs to
cover the scene of interest entirely. To avoid introducing photo-
metric inconsistencies, unlike [4], we do not extend the lateral
dimensions of the model to incorporate novel scene areas if the
camera is exiting the region defined by the reference image.
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7. Conclusions

We presented a novel progressive RGB-D image refinement
pipeline that instantaneously produces a high-quality, geomet-
rically and photometrically consistent RGB-D image reconstruc-
tion from RGB-D image sequences. Assisted by depth values to
guide the alignment and to correct for disparity, our design al-
lows for the refinement of general 3D scenes and, thus, fills the
gap between 2D progressive refinement imaging and online 3D
reconstruction techniques with high-resolution textures.

Colors and depths are hierarchically fused into an adaptive-
resolution, progressively improving model of the scene, while
strictly decoupling color data from the coarse and potentially
incomplete geometry representation. Our pipeline modules are
designed for resilience against low-quality, low-resolution depth
information while refining the high-resolution color data in ho-
mogeneous depth regions as well as at object silhouettes. To
that end, our method performs local color consistency operations
in image space before applying a novel blending strategy for
color fusion, taking the gain in visual detail into account. To
benefit from progressively refined range values, depths are fused
based on a novel depth voting scheme that allows for correcting
inaccurate depth estimates.
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H

Fig. 12. Comparison of the reconstructed depths for the VillageModel data set, using a Parula colormap ranging from 1.5m to 2.75m.
Fig. 13. Robustness against self-localization drift. Refinement of the LongOffice-
ousehold data set before exiting the reference viewpoint (left) and the final

refinement after re-entering the reference viewpoint (right) using our approach.
See also Fig. 6 for a comparison with the unrefined reference image.
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