
Inovis: Instant Novel-View Synthesis
Mathias Harrer∗

mathias.mh.harrer@fau.de
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Germany

Linus Franke∗
linus.franke@fau.de

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Germany

Laura Fink
laura.fink@fau.de

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Germany
Fraunhofer IIS

Germany

Marc Stamminger
marc.stamminger@fau.de

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Germany

Tim Weyrich
tim.weyrich@fau.de

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Germany

Figure 1: Our neural point-based rendering architecture is particularly suited for scenarious where novel, previously unseen
content is dynamically added to a scene. Left: simulation of a gradually built up LiDAR-based reconstruction; top-down view of
the novel views’ frustum and frustums of past frames, which are used as input. Although the scene ahead of the camera is
increasingly sparse with distance (center), our architecture manages to render a novel view with remarkable fidelty (right).

ABSTRACT
Novel-view synthesis is an ill-posed problem in that it requires
inference of previously unseen information. Recently, reviving the
traditional field of image-based rendering, neural methods proved
particularly suitable for this interpolation/extrapolation task; how-
ever, they often require a-priori scene-completeness or costly pre-
processing steps and generally suffer from long (scene-specific)
training times. Our work draws from recent progress in neural
spatio-temporal supersampling to enhance a state-of-the-art neural
renderer’s ability to infer novel-view information at inference time.
We adapt a supersampling architecture [Xiao et al. 2020], which
resamples previously rendered frames, to instead recombine nearby
camera images in a multi-view dataset. These input frames are
∗joint first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 by the authors. This is the authors’ version of thework and is offered for personal
use only; not for redistribution. The definitive Version of Record was published in in
SIGGRAPH Asia 2023 Conference Papers (SA Conference Papers ’23) as follows.
https://doi.org/10.1145/3610548.3618216

warped into a joint target frame, guided by the most recent (point-
based) scene representation, followed by neural interpolation. The
resulting architecture gains sufficient robustness to significantly
improve transferability to previously unseen datasets. In partic-
ular, this enables novel applications for neural rendering where
dynamically streamed content is directly incorporated in a (neu-
ral) image-based reconstruction of a scene. As we will show, our
method reaches state-of-the-art performance when compared to
previous works that rely on static and sufficiently densely sampled
scenes; in addition, we demonstrate our system’s particular suitabil-
ity for dynamically streamed content, where our approach is able to
produce high-fidelity novel-view synthesis even with significantly
fewer available frames than competing neural methods.

CCS CONCEPTS
• Computing methodologies → Rendering; Image-based ren-
dering; Reconstruction.

KEYWORDS
Novel-View Synthesis, Point-based Graphics, Neural Rendering
ACM Reference Format:
Mathias Harrer, Linus Franke, Laura Fink, Marc Stamminger, and Tim
Weyrich. 2023. Inovis: Instant Novel-View Synthesis. In SIGGRAPH Asia
2023 Conference Papers (SA Conference Papers ’23), December 12–15, 2023,

https://orcid.org/0009-0006-7776-4772
https://orcid.org/0000-0001-8180-0963
https://orcid.org/0009-0007-8950-1790
https://orcid.org/0000-0001-8699-3442
https://orcid.org/0000-0002-4322-8844
https://doi.org/10.1145/3610548.3618216

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Mathias Harrer, Linus Franke, Laura Fink, Marc Stamminger, and Tim Weyrich

Sydney, NSW, Australia. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3610548.3618216

1 INTRODUCTION
Novel-view synthesis creates previously unobserved images of a
scene, from camera observations from different angles. As such, it
is an inherently ill-posed problem. Recently, reviving the traditional
field of image-based rendering, neural methods proved particularly
suitable for this interpolation/extrapolation task; however, they
often require dedicated and exhaustive training to learn the scene’s
appearance prior to rendering, usually a time-consuming process.

Our goal was to devise a system that is able to produce novel
views of an initially incomplete scene, at interactive rates (i.e., in-
stant novel-view synthesis) and without the requirement of prepro-
cessing the scene beforehand, to enable immediate view generation
as camera data becomes available, for instance in a live streaming
scenario, such as virtual site inspection or chase cams.

Amongst prior art, two major directions have shown promise in
the last years: implicit and proxy-based methods.

Proxy-based methods build upon a traditional approach of image-
based rendering [Shum and Kang 2000] by using a geometry proxy
(commonly a mesh or point cloud) and integrating captured views
into a target view on this proxy. Recent examples of this are Neu-
ral Point Based Graphics (NPBG) [Aliev et al. 2020] and exten-
sions [Rakhimov and Ardelean et al. 2022; Rückert et al. 2022],
as well as Stable View Synthesis (SVS) [Riegler and Koltun 2021].

Implicit methods forgo this direct geometry for a neural implicit
representation (commonly an MLP) and query this representation
for novel views. Best known in this domain are NeRF [Mildenhall
et al. 2021] and their variants [Barron et al. 2021; Turki et al. 2022;
Yu et al. 2021; Zhang et al. 2020].

Recent years witnessed improvements in computational costs of
methods in both classes. This includes the use of generalized feature
encoders [Rakhimov and Ardelean et al. 2022; Riegler and Koltun
2021] or clever data structures [Müller et al. 2022a] to reduce prepro-
cessing time from hours to seconds. Specialized renderers [Rückert
et al. 2022; Schütz et al. 2022] reduce inference time, and learned
scene priors can reduce the number of inputs required for some
methods [Yu et al. 2021]. The above, however, depend on repeated
observations of scene elements for high-quality reconstructions.
We observe that, particularly for interactive applications that re-
quire instant novel-view synthesis in regions where the scene is
just being observed, this poses a major limitation.

To address this, we devise an interactive (thus preprocessing-
free) solution that supports instantaneous novel-view synthesis
even in regions with poor coverage by input frames. It operates in
the geometry proxy domain, directly on point clouds to avoid costly
and potentially unstable meshing [Wolff et al. 2016] and capitalizing
on point clouds being the native representation of 3D reconstruction
methods such as multi-view stereo [Schönberger et al. 2016], RGBD
streams [Keller et al. 2013], or LiDAR scanners [Liao et al. 2022].

Our method employs a neural point-based renderer that largely
follows the design of NPBG [Aliev et al. 2020]. In their original
design, appearance descriptors are optimized in an off-line process.
In contrast, our approach seeks to work with dynamic input—and

an evolving model—at render time, assuming a SLAM-like setting
in which a (point-based) 3D representation is gradually built up.

As a key contribution of our method, our rendering system
does not simply rely on the fused model representation but also
capitalizes on the availability of original frames close to the target
view to be rendered, by combining the model rendering with a
more image-based approach that recombines these nearby frames
(which we call auxiliary frames) to fill in higher-fidelity information
where a consistent high-resolution model has not yet been built.
Recombination and fusion with a direct (neural) rendering of the
point-based representation is enabled by drawing from work on
temporal supersampling [Xiao et al. 2020], re-applied in our context.

In effect, our method is designed to use fewer resources and cap-
turing constraints: new scenes do not require new training (unlike
Aliev et al. [2020] or Rückert et al. [2022]); the method works di-
rectly on sparse point clouds (unlike Stable View Synthesis [Riegler
and Koltun 2021], which requires highest-quality geometry). As a
result, our method works even on dynamic LiDAR or depth-map
streams, allowing on-the-fly novel-view synthesis previously not
possible in neural point renderings. In summary, our paper’s con-
tributions are:

• An instantaneous, high performance method for novel-view
synthesis that compares favorably to the state of the art in
similarly constrained scenarios.

• Novel-view synthesis in previously difficult or impossible
scenarios, such as live depth map streams.

• An optional temporal feedback loop that reuses previously
rendered novel views to augment the set of RGBD captured
images for improved temporal coherence.

• An open-source implementation of themethod (https://reality.
tf.fau.de/publications/2023/harrerfranke2023inovis/).

2 RELATEDWORK
Our work builds upon the state of the art in novel-view synthesis
and point-based 3D reconstruction and rendering, while drawing
from analogies to neural supersampling.

Novel-View Synthesis. Novel-view synthesis is a long-standing
problem with a large body of work in computer vision and graphics.
Early approaches employ image-based rendering, with large activity
in the early 2000s [Kang et al. 2007; Shum and Kang 2000] and
renewed interest with the advance of deep learning models that
have the potential to replace or augment classic pipelines [Tewari
et al. 2020, 2022]. Generally, methods vary in their utilization and
representation of the underlying scene geometry, with light field
approaches, for instance, forgoing explicit geometric representa-
tions (e.g., NeRF) while point or mesh-based methods build upon
existing geometry.

Recent implicit methods follow NeRF [Mildenhall et al. 2021]
and use a fully connected network combined with volume render-
ing to optimize a continuous representation. They achieve visually
impressive results but come with significant challenges that sev-
eral follow-up works address: reduction of the number of required
views [Chibane et al. 2021; Yu et al. 2021; Zhang et al. 2020]; im-
provement of rendering speeds [Barron et al. 2021; Chen et al. 2021;
Neff et al. 2021] and training times [Chen et al. 2021; Chibane et al.
2021; Müller et al. 2022a; Tancik et al. 2021; Turki et al. 2022].

https://doi.org/10.1145/3610548.3618216
https://doi.org/10.1145/3610548.3618216
https://reality.tf.fau.de/publications/2023/harrerfranke2023inovis/
https://reality.tf.fau.de/publications/2023/harrerfranke2023inovis/

Inovis: Instant Novel-View Synthesis SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

In the domain of explicit scene representations (mainly point
clouds and meshes), recent advances came through neural ren-
dering techniques, that fall into two categories: approaches that
use individual, scene-based overfitting, and those that generalize
across scenes. For scene-specific methods, object texture optimiza-
tion [Thies et al. 2019] and per-point descriptors [Aliev et al. 2020;
Kopanas et al. 2021; Rückert et al. 2022] show great results inte-
grating neural methods and explicit geometry. The generalizing
methods partially follow in the footsteps of image-based render-
ing [Chaurasia et al. 2013; Debevec et al. 1998] and include pixel
blending with learned factors [Hedman et al. 2018], integration
of encoded features into blending [Riegler and Koltun 2020, 2021]
and interpolation of nearby views with transformer-based architec-
tures [Wang et al. 2021]. Lastly, feature-encoding of input images
before aggregation into points [Rakhimov and Ardelean et al. 2022]
proved successful.

Similar to implicit techniques, however, these explicit methods
feature lengthy training times [Aliev et al. 2020; Rückert et al. 2022;
Thies et al. 2019], challenging inference speeds [Riegler and Koltun
2021; Wang et al. 2021] and generally depend on a-priori scene
completeness, prohibiting use on live camera streams.

Closest to our scope, recent work that bridges implicit and
explicit approaches tackles the task of online scene reconstruc-
tion [Clark 2022; Müller et al. 2022b; Sucar et al. 2021]. These involve
training a reconstruction and creating respective novel views dur-
ing capture time; however, time to image (training plus rendering)
is still in the order of seconds for high-fidelity images. Furthermore,
faithful reconstructions require repeated observations of the same
objects.

Our work tackles these shortcomings, supporting incomplete
scene observations, generalized feature encoding without scene-
specific pretraining, featuring fast inference without online train-
ing.

Capturing and Rendering Point Clouds. Point clouds can be cap-
tured using a variety of methods, the most common being RGBD
cameras with depth projection or fusion techniques [Dai et al. 2017b;
Keller et al. 2013; Whelan et al. 2016], LiDAR-based mapping (of-
ten present on cars [Liao et al. 2022]) or multi-view stereo tech-
niques [Schönberger et al. 2016].

The advantages of point clouds, apart from the ease of capturing,
include quite precise (if sparse) data points as well as many estab-
lished fast rendering methods [Schütz et al. 2021, 2022, 2019] and
well-established hole-filling neural networks proven in novel-view
synthesis tasks [Aliev et al. 2020; Kopanas et al. 2021; Rakhimov
and Ardelean et al. 2022; Rückert et al. 2022]. This combination
forms a foundation of our proposed method.

Closest to our method is NPBG++ [Rakhimov and Ardelean et al.
2022], which integrates features from all input images (via a gener-
alized feature encoder) within a point cloud that is then neurally
interpolated to render novel views. It involves a few minutes of
preprocessing and renders novel views in real time. In contrast to
NPBG++, however, our method does not require preprocessing and
is not bound to a-priori scene completeness; moreover, its lower
per-point memory footprint improves scalability to larger scenes.

Neural Supersampling. A special case of novel-view synthesis is
real-time (spatio-temporal) upsampling of lower-resolution inputs,

with prominent use in video upsampling [Kappeler et al. 2016;
Liu and Sun 2013; Tao et al. 2017] and, more recently, real-time
upsampling for video games, such as Nvidia’s DLSS [Edelsten et al.
2019]. Recent approaches increasingly use neural networks to up-
scale the input stream [Liu et al. 2022]. Another class of solutions
achieves temporal supersampling mostly via temporal information
projected to current frames [Guo et al. 2021; Thomas et al. 2022;
Xiao et al. 2020].

A core insight of our paper is that upsampling from coarse data
solves a similar problem as novel-view synthesis from a sparse
point cloud, in that both aim to fill in missing information; and that
recent solutions for both rely on feature encoding and interpolation
stages.

In this paper, we draw from previous research in temporal su-
persampling and transfer insights from Xiao et al. [2020]’s neural
supersampling feature encoding and feature reweighting concepts
for a fast and lightweight novel-view synthesis pipeline that is able
to self-correct most common warping artifacts.

3 METHOD
Our method employs a neural point-based renderer that largely
follows the design of NPBG [Aliev et al. 2020]. Their scene repre-
sentation are 3D points, each holding a low-dimensional feature
vector that describes the view-depend appearance and local geom-
etry of each point. (Their feature encoding is learned as part of
an exhaustive preprocessing of the scene.) For a given viewpoint,
these 3D points are sparsely rendered at multiple resolutions and
transformed into a dense, high-resolution RGB rendering using a
multi-scale U-Net.

In their original design, appearance descriptors are precomputed
in an off-line process, and the multi-resolution renderings to be fed
into the U-Net are rendered in feature space. In contrast, our ap-
proach seeks to work with dynamic input—and an evolving model—
at render time. Accordingly, and with the convenient side-effect
of memory savings that allow for larger scenes, point and image
attributes are kept in the original RGB(D) format for longer, and fea-
ture vectors are extracted only on the fly, see our pipeline overview
in Fig. 2. (The encoder is pre-trained using a class of similar input
scenes.)

In general, we assume a SLAM-like setting, in which a (in our
case point-based) 3D representation is gradually built up while
additional RGBD data is progressively received and fused into the
model.

As a key contribution of our method, our rendering system
does not simply rely on the fused model representation but also
capitalizes on the availability of original frames close to the target
view to be rendered, by combining the model rendering with a more
image-based approach that recombines these nearby frames to fill
in higher-fidelity information where a consistent high-resolution
model is not yet available. Notably, these additional frames (we call
them auxiliary views) may contain only sparse depth data (as, e.g.,
in the case of LiDAR sensors) but are assumed to be dense in RGB.

While similar in spirit to traditional image-based rendering and
texturing [Buehler et al. 2001; Schönberger et al. 2016], we blend
feature descriptors rather than RGB values and borrow architectural
aspects from the design of Xiao et al. [2020].

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Mathias Harrer, Linus Franke, Laura Fink, Marc Stamminger, and Tim Weyrich

point cloud multi-resolution
rendering

feature
encoding

reweighting

reconstruction

auxiliary images warping

novel view

ground truth

lossD RGBD

multi-resolution
features

auxiliary image
features

feature
encoding

⊗

Figure 2: Our rendering pipeline extends the approach of NPBG; novel components are highlighted in blue. From a set of
auxiliary (RGBD) images from nearby input (or previously rendered) views, relevant views are selected and encoded. Guided
by a rendering of the point cloud, they are warped and reweighted to mitigate occlusion and ghosting effects. Subsequently,
features from the multi-resolution rendering of the point cloud are extracted, and these buffers are passed to the reconstruction
network for the final rendering. The pipeline is trained end-to-end against ground truth images.

In concrete terms, for every output (target) frame, our system
determines nearby original camera images (Sec. 3.2), converts them
into feature space (Sec. 3.3) and warps them into that target frame
(Sec. 3.4). The warp is assisted by depths of the so far accumulated
3D model. The different source pixels are blended using a reweight-
ing network [Xiao et al. 2020], which leads to superior blending
results over explicit weighting functions and hole-filling strategies
(Sec. 3.5). Subsequently, features from the multi-resolution render-
ing of the point cloud are extracted (Sec. 3.1) and combined with the
blended (feature) images before being passed to the reconstruction
network for rendering (Sec. 3.6).

Any (supervised) pre-training takes place using this complete
pipeline (Sec. 4). In Sec. 5 we test the system both with previously
observed data (in order to allow comparison to previous works) as
well as with dynamic input outside the training dataset, a scenario
not normally considered by previous work.

3.1 Target View Feature Extraction
The backbone of our novel-view rendering architecture is an NPBG-
inspired neural point-based renderer that roughly divides into two
parts: sparse multi-resolution encoding of a target frame (which we
discuss here); and U-Net-based neural rendering that transforms
this representation into an RGB rendering (Sec. 3.6).

First, we render the raw (RGB) point cloud with a depth-testing,
one-pixel per point OpenGL hardware renderer to obtain a sparse
RGBD image. In a second step, we then use a feature encoder with
the same structure as the auxiliary view’s feature extractor (Sec. 3.3),
except a filter number of 32 and output of 8 features derived from
the rendered sparse point cloud. On output, the resulting features
are concatenated again with the network input.

These two steps are repeated for every resolution level fed into
the multi-scale rendering U-Net described (Sec. 3.6). In our exper-
iments we use three lower-resolution point renderings, at 1/2, 1/4,
and 1/8.

The multi-res structure serves two purposes: more general oc-
clusion features can be learned from these coarser representations;
during training, the feature extractor sees a more varying range of
point distributions, making the feature extractor more robust.

3.2 Auxiliary View Selection
We collect 𝑛views auxiliary images, taken from nearby captured
RGB images. Depending on the sensor types and acquisition sys-
tem, captured depth images are used (RGBD scenes), or (sparse)
corresponding depth samples are generated from the LiDAR data
using the same point renderer we use in Sec. 3.1. Either depth
representation is used without any further preprocessing.

We generally determine the 𝑛views nearest views by selecting
those that minimize the following metric based on a positional
factor 𝑓𝑝 and a view directional factor 𝑓𝑑 :

𝑓𝑝 = 0.5 +max
(
∥ ®𝑝 − ®𝑝target∥2, 0.5

)
, (1)

𝑓𝑑 = 1 −
(

®𝑣
∥®𝑣 ∥

)⊤
·

®𝑣target
∥®𝑣target∥

. (2)

Here, 𝑝target and 𝑣target are the position and view direction of the
target view, and 𝑝 and 𝑣 are the auxiliary buffers’ position (view-
point) and view direction. In general, positions close to the target
position will always contribute more, thus scoring lower—as do
similar view directions. Combining these two factors then results
in a similarity score 𝑠 , where lower values indicate better view
choices:

𝑠 = 𝑓𝑝 (1 + 𝛼 𝑓𝑑) . (3)

Hereby, 𝛼 is used to balance these two factors, with larger 𝛼 pri-
oritizing tighter view directions. We use 𝛼 = 100 for a trade-off
that penalises distances of around 10 meters similarly to 90-degree
view offsets. Views are always ordered from best to worst, thus
guiding the network to put more emphasis on the closest view. The
resulting view weighting and ranking in spirit resembles traditional
view-dependent rendering approaches [Buehler et al. 2001]; more

Inovis: Instant Novel-View Synthesis SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

point rendering no environment encoding environment encoding closest ground truth

Figure 3: Comparison of environment encoding vs no environment encoding vs point rendering vs closest ground truth.
Environment encoding significantly improves image quality in areas unoccupied by points. Even without environment
encoding, the surrounding areas of points are filled with information, showing the capability of encoding a patch around a
pixel into a feature tensor which is then warped, using a sparse point rendering.

complex view selection schemes, such as ORB-SLAM [Campos et al.
2021], could be used but were deemed to offer diminishing returns
within the scenarios at hand.

For some datasets, varying quality of nearby views could lead to
moderate flickering in the output video. In these cases, adding the
previously rendered view to the set of candidates for auxiliary views
helps mitigate flicker: that view often scores highly on the nearby-
view metric and, if included amongst the 𝑛views frames, improves
temporal coherence across output frames. For training, however,
previous frames are never considered; our pipeline is robust enough
to easily handle a previously rendered frame as input, considering
that it is fully compatible with the original RGBD-captured frames.

3.3 Feature Encoding for Auxiliary Views
After view selection, a lightweight feature encoding network trans-
forms RGBD pixels into 12-dimensional feature vectors. Note that
the encoder captures spatial context as well, so that even under
sparse (point-wise) reprojections, as applied in the following sec-
tion, relevant spatial information is preserved.

We use a three-stage gated convolution setup with ReLU acti-
vations and a filter number of 16. (Xiao et al. [2020] use 32; our
experiments showed no change in training loss when going from
16 to 32, so we went with fewer weights.)

Also in contrast to Xiao et al., we use gated convolutions [Yu
et al. 2019], which have learnable masks for scaling inputs. As
our auxiliary images’ depth maps are sparsely filled, passing this
map to gated convolutions allows the feature encoding network
to identify areas which can not be correctly warped (due to miss-
ing depth) and to amplify this information to adjacent, warpable
pixels. Thus, gated convolutions in our case allow for a form of
“inverse” masking, where information warping is able to account for
sparse depth maps similarly to small-scale attention mechanisms
in transformers [Vaswani et al. 2017]. Lastly, this allows us to use a
smaller number of filters, which generally improves performance
and reduces the risk of overfitting.

3.4 Warping
For each auxiliary view, both features and RGBD are warped to the
target view: for each point of the point cloud visible from the target
perspective, its pixel value (RGBD plus feature vector), at its back-
projection into the auxiliary view, is copied to the new location.

Each auxiliary image is warped separately and the resulting images
are mixed together in later pipeline steps.

Pixels that do not feature rasterized points miss warped informa-
tion. These areas are optionally augmented bywarping the auxiliary
image onto a distant background plane behind the point proxy ge-
ometry. This helps to greatly improve image quality in areas that
do not feature points, especially for far away areas (e.g., sky or
far-away buildings). This environment handling results in those
areas being filled with plausible content from the background, as
the disparity is barely noticeable at these large distances, see Fig. 3.

Then, the RGBD images from the auxiliary views and the original
rendering are passed to the reweighting network, which computes
a pixel-wise weighting factor for each view to scale the features.

3.5 Reweighting
This step helps to lessen the effect of disocclusion and warping arti-
facts. Reweighting mostly follows the work of Xiao et al. [2020]. The
reweighting network takes RGBD information from both warped
auxiliary views and the rendered target view to determine per-pixel
weights for all 𝑛views auxiliary images as output. The warped image
data is weighted accordingly by multiplying the weights with the
auxiliary features. The reweighted data is concatenated and passed
to the front layer of the neural render network.

The network consists of three blocks of convolution and ReLU
with filter numbers of 32, outputting 𝑛views multiplication factors,
scaled to [0, 10] as stated in the original paper [Xiao et al. 2020].

3.6 Neural Render Network
The neural rendering network outputs the final stable novel view
of the requested extrinsics and intrinsics. It is a U-Net with five
levels, similar to established point-cloud rendering inpainting net-
works [Aliev et al. 2020; Rückert et al. 2022]. Each downsampling
block uses a gated convolution and max pooling layer, while each
upsampling block uses bilinear upsampling and a gated convo-
lution with skip connections between the blocks. Our filters are
32, 32, 32, 32, 32, which provided the best trade-off between quality
and performance and converge faster than deeper networks.

We input the full-resolution encoded features of the target and
auxiliary views to the network, with the lower-resolution target
feature maps progressively being added to their respective down-
sampling blocks.

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Mathias Harrer, Linus Franke, Laura Fink, Marc Stamminger, and Tim Weyrich

4 TRAINING METHODOLOGY
Scenes. Tab. 3 summarises the scenes used for training (and eval-

uation), which cover a wide range of scenarios and setups, including
depth capturing through LiDAR, multi-view stereo, and RGBD cam-
eras; various indoor and outdoor environments, as well as inside-out
and outside-in capturing setups.

We use the Playground and M60 scenes from the commonly
used Tanks and Temples dataset [Knapitsch et al. 2017], which has
depths estimated with multi-view stereo. Several sequences from
Kitti-360 [Liao et al. 2022] offer sequential recordings of a driving car
captured with LiDAR, which we modified to simulate the order in
which depth samples and RGB images would come in within a live
LiDAR system (based on field of view and distance of the original
Kitti 360 point cloud). Additionally, we used our own captured
scene, Office, using a portable indoor LiDAR, with capture positions
roughly 2m apart. Extensive preprocessing yielded a cleaned-up
point cloud with a resolution of 5mm.

For live-RGBD scenes, we use the ScanNet [Dai et al. 2017a]
and Redwood [Choi et al. 2016] scenes, which are captured RGBD
streams for which we estimated positions on the fly with ORB-
SLAM [Campos et al. 2021] where no poses where present. Apart
from that, we captured custom outdoor scenes using a stereo camera,
featuring sequential traversal of environments without repeated ob-
servation of the same objects. We obtained the poses and keyframes
for these scenes with Snake-SLAM [Rückert and Stamminger 2021].
For all live-RGBD scenes, we create timestamped point clouds from
the last 10 images in the sequence.

Training. Training is generally initialized with a network pre-
trained on the Office scene, owing to its large spatial extent com-
bined with large baselines that prime training against ghosting.
Subsequently, networks are refined for individual classes of scenes,
without temporal feedback frames (using captured data only). Test-
ing, naturally, always takes place on previously unseen data.

Loss. As training loss, we use a mix of VGG16 [Johnson et al.
2016] and SSIM [Wang et al. 2004]. The VGG loss is a common
feature-based function, which is especiallywell suited in our case (as
seen in Sec. 5.4). However, regular patterns can appear on surfaces,
which can be removed by adding a small amount of SSIM loss. Our
final loss function is the following (𝑤ssim = 0.25 and𝑤vgg = 1):

loss(𝑥, 𝑥) = 𝑤ssim · (1 − SSIM(𝑥, 𝑥)) +𝑤vgg · VGG16(𝑥, 𝑥) (4)

Inference. Our method is particularly effective when applied
to live datasets that supply a steady stream of new images, such
as Kitti-360, Redwood, ScanNet, and our custom outdoor scenes.
The images are encoded during inference and selected based on
their capture position and rotation, enabling us to choose images
without having to store them in memory. This makes our approach
well-suited for integration with a traditional streaming approach,
which only holds a subset of images in memory, thereby minimizing
memory usage.

Additionally, we only store RGB data in our point cloud, com-
pared to competing methods such as NPBG++ [Rakhimov and Arde-
lean et al. 2022], who store largemulti-channel descriptors per point.
All in all, our rendering is lightweight and is easily interactive
(∼50ms/frame rendering time on Kitti and Redwood datasets).

5 RESULTS
In the following, we present our evaluation of Inovis comparing to
related work, as well as ablation studies to give insights on what
makes our method effective. For qualitative results, see Fig. 7.

5.1 Qualitative Evaluation
We compare our approach to established neural novel view synthe-
sis techniques. These include Stable View Synthesis (SVS) [Riegler
and Koltun 2021], NPBG++ [Rakhimov and Ardelean et al. 2022],
IBR-net [Wang et al. 2021] and ADOP [Rückert et al. 2022].

Table 1: Approximate pre-
processing and render times
(ScanNet 1296×968).

preprocess rendering

ADOP ~ 6 h ~ 13 ms
IBR-Net < 1 min ~ 2 min
NPBG++ ~ 1 min ~ 100 ms
SVS ~ 4 h ~ 3 s
Inovis (ours) - ~ 131 ms

For our method, a subset of
scenes is used to train a net-
work tuned to one scene type.
Baseline methods that have
generalizing capabilities (all ex-
cept ADOP) were trained on
the whole Redwood and Scan-
Net datasets, except the unseen
evaluation scenes. ADOP was
individually trained on each
evaluation scene to allow for
a comparison. We accumulate
metrics over five unseen scenes
from ScanNet (0, 20, 30, 40, 50, 80), five Redwoodmotorcycles (05489,
05751, 05984, 06186, 06190) and three Redwood sofas (00577, 05477,
07294). The results of this evaluation can be seen in Tab. 1, Tab. 2
and Fig. 6. In terms of quality, we consistently outperform NPBG++,

Table 2: Comparison with SVS,
IBRnet, ADOP and NPBG++. Ex-
cept for ADOP, no scene-specific
finetuning is performed.

PSNR↑ LPIPS↓ SSIM↑

M
ot
or
cy
cl
e ADOP 20.34 0.236 0.585

IBR-Net 22.93 0.193 0.730
NPBG++ 14.70 0.543 0.497
SVS 19.21 0.273 0.658
Inovis (ours) 20.63 0.195 0.698

So
fa

ADOP 24.26 0.172 0.598
IBR-Net 27.45 0.159 0.809
NPBG++ 17.02 0.392 0.637
SVS 22.35 0.253 0.728
Inovis (ours) 24.19 0.187 0.769

Sc
an
N
et

ADOP 24.78 0.208 0.694
IBR-Net 24.96 0.248 0.802
NPBG++ 20.90 0.396 0.758
SVS 23.76 0.316 0.796
Inovis (ours) 22.78 0.309 0.792

while they show slightly
better render times. SVS
shows similar results
with significantly slower
rendering. ADOP and
IBR-Net usually provide
better metrics, but neither
method in its current form
is suitable for online novel
view synthesis: ADOP
requires scene-specific
training (~6h) and IBR-Net
shows long rendering
times for single images
(~2 min). In general, our
approach provides state-
of-the-art results with
fewer limitations than
competing approaches.

To further demonstrate
generalization, we used a
subset of scenes from the
Kitti dataset to train a net-
work that was also used to

create all evaluation images of our own custom dataset (Fig. 8
and supplementary video). While these are also outdoor scenes,
their characteristics are different, further corroborating generaliz-
ing power.

Inovis: Instant Novel-View Synthesis SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Table 3: Evaluation datasets. We use a wide range of possible scenarios to evaluate our
approach. Scene tagged with live indicate an expanding live dataset.

Dataset # Points Point Cloud # Image Image Capturing Environment
per scene capturing per scene Resolution Methodology Type

Tanks & Temples ~10M MVS ~300 1920 − 2144 × 1088 outside-in various
Kitti-360 ~8M Live-LiDAR ~630 1408 × 352 sequential outdoor driving
ScanNet ~30M Live-DepthCam ~120 1280 × 960 inside-out indoor rooms
Redwood ~35M Live-DepthCam ~150 640 × 480 outside-in object scans
Office ~70M LiDAR ~700 960 × 544 inside-out indoor rooms
Custom 0.5M-40M Live-StereoCam 40-250 1280 − 1920 × 720 − 1080 sequential outdoor scans

Table 4: Performance numbers in ms:
inference (Inf), point rendering (PR)
and total rendering time (T) on single
scenes.

Dataset Inf PR T

Kitti (3.6M pts, 1408×376) 53.8 1.2 56.2
ScanNet (70M pts, 1296×968) 120.6 9.7 131.7
Redwood (36M pts, 640×480) 36.7 9.3 47.4
Office (40M pts, 960×540) 58.9 12.9 73.1
Custom (0.6M pts, 1280×720) 88.3 0.6 90.2

5.2 Performance Evaluation
Training. our network end-to-end takes around ∼15–24h on an

NVIDIA V100, depending on dataset size and resolution.

Rendering. Training is done once per scene type, hence runtime
performance depends on rendering (i.e., novel-view synthesis) only,
which highly depends on the number of auxiliary views (cf. Sec. 5.4)
and resolution. See Tab. 4 for an overview of rendering times for
different datasets, obtained with an NVIDIA A5000. We measured
interactive frame times of up to 20 fps for 960×540 images and
∼11 fps for 1280×720 images. Even for large point clouds (tens of
millions of points), inference still dominates rendering time, but
differences in visible point count cause variations in total rendering
time, as illustrated in Fig. 4.

To assess potential for streaming scenarios, we compare our ap-
proach against two competing methods: ADOP [Rückert et al. 2022],
as a high-quality point-based approach with very fast neural ren-
dering; InstantNGP [Müller et al. 2022a], which features remarkable
real-time training of a NeRF, especially when applied on outside-
in scenarios. Considering that neither ADOP’s nor InstantNGP’s
publicly available implementations were designed to incremen-
tally ingest streamed content, we devised an evaluation regime in
their favor that, for a selection of time stamps within a stream of
keyframes, grants each algorithm combined training and rendering
time roughly equivalent to the time passed until that timestamp;
see Fig. 8 for the results. Our approach outperforms both methods,
as no training is needed and produces high fidelity images from the
start, while both compared methods only gradually improve visual
quality with increasing time budget. We outperform both methods
in all comparisons w.r.t. time-to-image (training plus rendering)
and achieve our highest quality even within the minimum time
budget.

5.3 Use-Case Evaluation
Our method maps well on different categories of problems rarely
tackled in novel-view synthesis approaches.

Live LiDAR Car Data. For live sequences from driving scenarios,
take a look at Fig. 7 and Fig. 8 as well as the supplemental video.
Using the car dataset Kitti-360, where previously unseen content
continuously emerges in front of the car-mounted camera, we show
how our approach excels in synthesising views in regions where
the available data is sparse. As long as the captured data is within
a similar class to the scene our model has been trained on, we are

0

20

40

60

80

pe
rf

or
m

an
ce

 [m
s]

Inference 58.9ms Point Rendering 13.4ms Total 73.6ms

Figure 4: Performance over time during traversal of the office
scene (960×540, 4 auxiliary views), featuring a large point
cloud (40Mpoints). Due to the large point count, point render-
ing time is significant. Inference time remains constant while
rendering time varies with the number of visible points.

able to instantly create novel views from a small set of captured
images and the current point cloud.

Large Point Clouds. Large point clouds can be challenging for
neural methods. In contrast to that, our method easily handles large
point clouds, as seen with the Office dataset having 75M points.
Results for this scene can be seen in Fig. 7 and the supplementary
video.

Sparse Point Clouds. Since our approach encodes the surround-
ings of pixels into feature vectors and warps these vectors instead
of colors, we can augment comparatively sparse point data with
image information, as shown with the Kitti-360 dataset, which fea-
tures relatively sparse LiDAR-captured point clouds. See Figs 3, 7,
and 8, and the supplementary video.

Live RGBD Data. Our approach is a natural fit for live-streamed
RGBD data. Provided a SLAM computes camera poses in real time
and a network for a similar scene has already been trained, Inovis
creates new images in the matter of dozens of milliseconds without
any scene-specific training.

5.4 Ablation Studies
In this section, we provide studies to show the root of the effec-
tiveness of our method. Variants were evaluated by using our loss
function (Sec. 4) on the hold-out set of captured frames.

Feature Extraction. Our pipeline encodes small patches of auxil-
iary view information into feature vectors, allowing this informa-
tion to be transferred to novel views, as seen in Fig. 3. As described
in Sec. 3, we use gated convolutions, which usually provide state-
of-the art holefilling capabilities. In contrast to that, we use their

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Mathias Harrer, Linus Franke, Laura Fink, Marc Stamminger, and Tim Weyrich

Table 5: Loss by convolution
type of feature encoding of
auxiliary images, by dataset.

Dataset basic conv. gated conv.

Office 0.1867 0.1798
Kitti-360 0.5807 0.5561

masking abilities inversely for
auxiliary image encoding, with
the sparse depth map guiding in-
formation amplification. For re-
sults of this, see Tab. 5. In sparse
point cloud scenarios (such as Li-
DAR in cars) this addition pro-
vides great improvement in the
relevant (usually small) areas,
thus increasing training convergence and providing improvements
of up to 5% overall.

Number of Auxiliary Images. We use a comparatively small num-
ber of auxiliary views compared to competing methods, which
for our setup suffices. As seen in Fig. 5, using more auxiliary im-
ages shows diminishing results especially considering the increased
computation time per frame, which increases linear with number
of images used. Four seems the best tradeoff between quality and
inference speed. In our experience, using four images also helps to
improve quality when deviating from ground truth views, although
two images already show a similar loss compared to four images.

Loss function. We compare different loss functions commonly

Table 6: Loss functions on the
Office dataset. NSS indicates the
loss function used by Xiao et
al. [2020].

Loss Function PSNR↑ LPIPS↓ SSIM↑

Train w. MSE 24.14 0.141 0.891
Train w. SSIM 24.16 0.110 0.917
Train w. VGG 23.85 0.090 0.913
Train w. NSS 24.27 0.102 0.919
Train w. Ours 24.22 0.093 0.917

used in novel view synthe-
sis methods in our method.
For results see Tab. 6. Numer-
ically, our metric performs
favorably, only slightly sur-
passed by the loss func-
tion of Neural Supersam-
pling [Xiao et al. 2020]; sub-
jectively, however, we find
that our metric provides
higher color accuracy for
our datasets, suggesting that
real-world datasets require
differing loss compositions
than synthetic data.

6 DISCUSSION
Input Quality. Our method relies on good quality captures to

produce high-quality results. This includes the capture positions of
the images not be too far apart in order for the method to work ef-
fectively. In general, regions without overlap from auxiliary images
show poor quality due to missing information to be interpolated.
We fall back on averaged pixel colors in our point cloud rendering,
but these can exhibit artifacts.

Temporal Stability. While our method is able to handle continu-
ous streams of new images, it may still struggle with scenes that
have significant changes over time. E.g., siginificant changes of
auxiliary images result in visible flickering, as can be observed in
the supplementary video.

Camera Intrinsics. Our pipeline is trained to produce output
images with similar camera intrinsics and resolutions as the input
images. Thus, if encoded patches are interpreted with different

1 2 3 4 5 6
auxiliary images

0.60

0.65

0.70

0.75

lo
ss

0

20

40

60

re
nd

er
in

g
tim

e
[m

s]

Redwood loss
Kitti-360 loss

Redwood perf
Kitti-360 perf

Figure 5: Loss and rendering performance vs auxiliary images
used.

camera characteristics, the output image can be blurred or squished.

Streaming Scenario. In principle, to minimize memory footprint
during view synthesis, only a small candidate set of nearby auxiliary
images as well as a point cloud of the current vicinity would have to
be kept in GPU memory. Further (nearby) images and points could
be dynamically streamed in and swapped out during run time;
however, in setups with limited transfer bandwidth, larger sets
should be kept in memory to avoid temporarily decreased quality
until the newer nearby data arrives. While our demonstrator does
not include such a streaming mechanism, we argue that our results
are indicative of favorable performance under this regime.

7 CONCLUSION
We presented a system for neural novel-view synthesis. We adapted
a supersampling architecture, which resamples previously rendered
frames, to instead recombine nearby camera images in a multi-view
dataset. The resulting architecture gains sufficient robustness to sig-
nificantly improve transferability to previously unseen datasets. In
particular, our system enables novel applications for neural render-
ing where dynamically streamed content is directly incorporated
in a (neural) image-based reconstruction of a scene. We show that
our method reaches state-of-the-art performance when compared
to previous works that rely on static scenes; in addition, we demon-
strated our system’s performance for dynamically streamed content,
a scenario not accessible to previous works in neural rendering.

Ultimately, we believe that our approach is opening up a number
of valuable applications, including wide-baseline video stabilisation,
VR conferencing with free viewpoint control within the remote
scene, virtual car mirrors, etc.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the scientific support and HPC
resources provided by the Erlangen National High Performance
Computing Center (NHR@FAU) of the Friedrich-Alexander-Uni-
versität Erlangen-Nürnberg (FAU) under the NHR project b162dc.
NHR funding is provided by federal and Bavarian state authorities.
NHR@FAU hardware is partially funded by the German Research
Foundation (DFG) – 440719683. Linus Franke was supported by the
Bayerische Forschungsstiftung (Bavarian Research Foundation) AZ-
1422-20. We thank NavVis GmbH for providing the office dataset.
We thank Darius Rückert for helping to capture the Custom dataset.

Inovis: Instant Novel-View Synthesis SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

REFERENCES
Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lem-

pitsky. 2020. Neural point-based graphics. In European Conference on Computer
Vision. Springer, 696–712.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-
Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for
Anti-Aliasing Neural Radiance Fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). 5855–5864.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Co-
hen. 2001. Unstructured Lumigraph Rendering. In Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01).
Association for Computing Machinery, New York, NY, USA, 425–432. https:
//doi.org/10.1145/383259.383309

Carlos Campos, Richard Elvira, Juan J. Gómez, José M. M. Montiel, and Juan D. Tardós.
2021. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial
and Multi-Map SLAM. IEEE Transactions on Robotics 37, 6 (2021), 1874–1890.

Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis.
2013. Depth synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG) 32, 3 (2013), 1–12.

Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and
Hao Su. 2021. Mvsnerf: Fast generalizable radiance field reconstruction from multi-
view stereo. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 14124–14133.

Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard Pons-Moll. 2021. Stereo
radiance fields (srf): Learning view synthesis for sparse views of novel scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
7911–7920.

Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. 2016. A Large
Dataset of Object Scans. https://doi.org/10.48550/ARXIV.1602.02481

Ronald Clark. 2022. Volumetric bundle adjustment for online photorealistic scene
capture. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 6124–6132.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Nießner. 2017a. ScanNet: Richly-annotated 3D Reconstructions of Indoor
Scenes. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE.

Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian
Theobalt. 2017b. Bundlefusion: Real-time globally consistent 3d reconstruction
using on-the-fly surface reintegration. ACM Transactions on Graphics (ToG) 36, 4
(2017), 1.

Paul Debevec, Yizhou Yu, and George Borshukov. 1998. Efficient view-dependent
image-based rendering with projective texture-mapping. In Eurographics Workshop
on Rendering Techniques. Springer, 105–116.

Andrew Edelsten, Paula Jukarainen, and Anjul Patney. 2019. Truly next-gen: Adding
deep learning to games and graphics. In In NVIDIA Sponsored Sessions (Game
Developers Conference).

Jie Guo, Xihao Fu, Liqiang Lin, Hengjun Ma, Yanwen Guo, Shiqiu Liu, and Ling-Qi
Yan. 2021. ExtraNet: real-time extrapolated rendering for low-latency temporal
supersampling. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–16.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and
Gabriel Brostow. 2018. Deep blending for free-viewpoint image-based rendering.
ACM Transactions on Graphics (TOG) 37, 6 (2018), 1–15.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time
style transfer and super-resolution. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14.
Springer, 694–711.

Sing Bing Kang, Yin Li, Xin Tong, Heung-Yeung Shum, et al. 2007. Image-based
rendering. Foundations and Trends® in Computer Graphics and Vision 2, 3 (2007),
173–258.

Armin Kappeler, Seunghwan Yoo, Qiqin Dai, and Aggelos K Katsaggelos. 2016. Video
super-resolution with convolutional neural networks. IEEE transactions on compu-
tational imaging 2, 2 (2016), 109–122.

Maik Keller, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim Weyrich, and
Andreas Kolb. 2013. Real-time 3D Reconstruction in Dynamic Scenes using Point-
based Fusion. In Proc. of Joint 3DIM/3DPVT Conference (3DV). 1–8. Selected for oral
presentation..

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and
Temples: Benchmarking Large-Scale Scene Reconstruction. ACM Transactions on
Graphics 36, 4 (2017).

Georgios Kopanas, Julien Philip, Thomas Leimkühler, and George Drettakis. 2021.
Point-Based Neural Rendering with Per-View Optimization. In Computer Graphics
Forum, Vol. 40. Wiley Online Library, 29–43.

Yiyi Liao, Jun Xie, and Andreas Geiger. 2022. KITTI-360: A novel dataset and bench-
marks for urban scene understanding in 2d and 3d. IEEE Transactions on Pattern
Analysis and Machine Intelligence 45, 3 (2022), 3292–3310.

Ce Liu and Deqing Sun. 2013. On Bayesian adaptive video super resolution. IEEE
transactions on pattern analysis and machine intelligence 36, 2 (2013), 346–360.

Hongying Liu, Zhubo Ruan, Peng Zhao, Chao Dong, Fanhua Shang, Yuanyuan Liu,
Linlin Yang, and Radu Timofte. 2022. Video super-resolution based on deep learning:

a comprehensive survey. Artificial Intelligence Review (2022), 1–55.
Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields
for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

Thomas Müller, Alex Evans, Christoph Schied, Marco Foco, András Bódis-Szomorú,
Isaac Deutsch, Michael Shelley, and Alexander Keller. 2022b. Instant neural radiance
fields. In ACM SIGGRAPH 2022 Real-Time Live! 1–2.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022a. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Transactions
on Graphics (ToG) 41, 4 (2022), 1–15.

Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H Mueller,
Chakravarty R Alla Chaitanya, Anton Kaplanyan, and Markus Steinberger. 2021.
DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using
Depth Oracle Networks. In Computer Graphics Forum, Vol. 40. Wiley Online Library,
45–59.

Ruslan Rakhimov and Ardelean, Andrei-Timotei Rakhimov and Ardelean, Victor Lem-
pitsky, and Evgeny Burnaev. 2022. NPBG++: Accelerating Neural Point-Based
Graphics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 15969–15979.

Gernot Riegler and Vladlen Koltun. 2020. Free view synthesis. In European Conference
on Computer Vision. Springer, 623–640.

Gernot Riegler and Vladlen Koltun. 2021. Stable view synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12216–12225.

Darius Rückert, Linus Franke, and Marc Stamminger. 2022. Adop: Approximate
differentiable one-pixel point rendering. ACM Transactions on Graphics (TOG) 41, 4
(2022), 1–14.

Darius Rückert and Marc Stamminger. 2021. Snake-SLAM: Efficient global visual iner-
tial SLAM using decoupled nonlinear optimization. In 2021 International Conference
on Unmanned Aircraft Systems (ICUAS). IEEE, 219–228.

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
2016. Pixelwise View Selection for Unstructured Multi-View Stereo. In European
Conference on Computer Vision (ECCV).

Markus Schütz, Bernhard Kerbl, and Michael Wimmer. 2021. Rendering point clouds
with compute shaders and vertex order optimization. In Computer Graphics Forum,
Vol. 40. Wiley Online Library, 115–126.

Markus Schütz, Bernhard Kerbl, and Michael Wimmer. 2022. Software rasterization
of 2 billion points in real time. Proceedings of the ACM on Computer Graphics and
Interactive Techniques 5, 3 (2022), 1–17.

Markus Schütz, Katharina Krösl, and Michael Wimmer. 2019. Real-time continuous
level of detail rendering of point clouds. In 2019 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR). IEEE, 103–110.

Harry Shum and Sing Bing Kang. 2000. Review of image-based rendering techniques.
In Visual Communications and Image Processing 2000, Vol. 4067. SPIE, 2–13.

Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. 2021. iMAP: Implicit
mapping and positioning in real-time. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 6229–6238.

Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P Srinivasan,
Jonathan T Barron, and Ren Ng. 2021. Learned initializations for optimizing
coordinate-based neural representations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2846–2855.

Xin Tao, Hongyun Gao, Renjie Liao, Jue Wang, and Jiaya Jia. 2017. Detail-revealing
deep video super-resolution. In Proceedings of the IEEE International Conference on
Computer Vision. 4472–4480.

Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi, Kalyan
Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
et al. 2020. State of the art on neural rendering. In Computer Graphics Forum, Vol. 39.
Wiley Online Library, 701–727.

Ayush Tewari, Justus Thies, BenMildenhall, Pratul Srinivasan, Edgar Tretschk,WYifan,
Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,
et al. 2022. Advances in neural rendering. In Computer Graphics Forum, Vol. 41.
Wiley Online Library, 703–735.

Justus Thies, Michael Zollhöfer, andMatthias Nießner. 2019. Deferred neural rendering:
Image synthesis using neural textures. ACM Transactions on Graphics (TOG) 38, 4
(2019), 1–12.

Manu Mathew Thomas, Gabor Liktor, Christoph Peters, Sungye Kim, Karthik
Vaidyanathan, and Angus G Forbes. 2022. Temporally Stable Real-Time Joint Neural
Denoising and Supersampling. Proceedings of the ACM on Computer Graphics and
Interactive Techniques 5, 3 (2022), 1–22.

Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. 2022. Mega-NeRF:
Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12922–
12931.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances
in neural information processing systems 30 (2017).

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou,
Jonathan T. Barron, RicardoMartin-Brualla, Noah Snavely, and Thomas Funkhouser.
2021. IBRNet: Learning Multi-View Image-Based Rendering. In CVPR.

https://doi.org/10.1145/383259.383309
https://doi.org/10.1145/383259.383309
https://doi.org/10.48550/ARXIV.1602.02481

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Mathias Harrer, Linus Franke, Laura Fink, Marc Stamminger, and Tim Weyrich

ZhouWang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing 13, 4 (2004), 600–612.

Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davison, and Stefan
Leutenegger. 2016. ElasticFusion: Real-time dense SLAMand light source estimation.
The International Journal of Robotics Research 35, 14 (2016), 1697–1716.

Katja Wolff, Changil Kim, Henning Zimmer, Christopher Schroers, Mario Botsch, Olga
Sorkine-Hornung, and Alexander Sorkine-Hornung. 2016. Point cloud noise and
outlier removal for image-based 3D reconstruction. In 2016 Fourth International
Conference on 3D Vision (3DV). IEEE, 118–127.

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton
Kaplanyan. 2020. Neural supersampling for real-time rendering. ACM Transactions
on Graphics (TOG) 39, 4 (2020), 142–1.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021. pixelnerf: Neural
radiance fields from one or few images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 4578–4587.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. 2019.
Free-form image inpainting with gated convolution. In Proceedings of the IEEE/CVF
international conference on computer vision. 4471–4480.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. Nerf++: Analyzing
and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020).

Inovis: Instant Novel-View Synthesis SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

NPBG++ SVS IBR- Net

R
ed

w
oo

d
m

ot
or

cy
cl

e
54

89
R

ed
w

oo
d

so
fa

 7
29

4
Sc

an
ne

t S
ce

ne
 0

00
00

_0
0

Inovis (Ours)

Figure 6: Visual comparison of Inovis with NPBG++, SVS and IBR-Net. Our method produces visually similar results to IBR-Net,
while outperforming NPBG++ and SVS.

Kii-360 Scene 00 Office

N
eu

ra
l R

en
de

ri
ng

G
ro

un
d

tr
ut

h
Po

in
t R

en
de

ri
ng

Kii-360 Scene 06 TT playground

Figure 7: Neural Renderings of our approach for three datasets: the Office dataset and the Tanks and Temples dataset, both
containing high quality point clouds and the Live LiDAR dataset Kitti-360. Our method produces high quality neural renderings
for all datasets.

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Mathias Harrer, Linus Franke, Laura Fink, Marc Stamminger, and Tim Weyrich
In

ov
is

 (O
ur

s)

5 s - 5 keyframes 15 s - 15 keyframes 45 s - full dataset (45 keyframes)

In
st

an
t-

N
G

P
A

D
O

P
In

ov
is

 (O
ur

s)

5 s - 42 frames 15 s - 126 frames 45 s - full dataset(381 frames)

In
st

an
t-

N
G

P
A

D
O

P

converged -- full dataset (45 frames)

converged - full dataset (381 frames)

Custom - Excavator

Kii-360

Figure 8: Comparison of streaming capabilities between ADOP, Instant-NGP and Inovis (Ours). Each method is provided with
different time budgets that match the data capture time frame of the respective dataset, e.g., a time budget of 15s for creating
a novel view from 15 keyframes. (column 1–3). The last column contains the results for unlimited time budgets. Both used
datasets resemble a sequential trajectory through a scene, rather than continuous observation of a single object: walking past an
excavator (Custom scene; top); a car driving through a neighborhood (Kitti-360; bottom). Training and rendering times, which
result in total time to image by adding up, are displayed in each image. For all examples shown, our system was pre-trained on
a subset of Kitti-360 scenes, excluding the one on display. Without further training, our network generalizes well to the shown
scenes, thus limiting the total time to image to mere rendering time (∼50–100ms) and resulting in the exact same image, no
matter the time budget. ADOP and Instant-NGP gradually improve with increasing time budget but do not reach our quality as
long as a time limit is in place.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Target View Feature Extraction
	3.2 Auxiliary View Selection
	3.3 Feature Encoding for Auxiliary Views
	3.4 Warping
	3.5 Reweighting
	3.6 Neural Render Network

	4 Training Methodology
	5 Results
	5.1 Qualitative Evaluation
	5.2 Performance Evaluation
	5.3 Use-Case Evaluation
	5.4 Ablation Studies

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

