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Figure 1: Given an flash-no-flash image pair of a “textured” material sample, our system produces a set of spatially varying BRDF parameters
(an SVBRDF, right) that can be used for relighting the surface. The capture (left) happens in-situ using a mobile phone.

Abstract

Material appearance acquisition usually makes a trade-off between
acquisition effort and richness of reflectance representation. In this
paper, we instead aim for both a light-weight acquisition procedure
and a rich reflectance representation simultaneously, by restricting
ourselves to one, but very important, class of appearance phenom-
ena: texture-like materials. While such materials’ reflectance is
generally spatially varying, they exhibit self-similarity in the sense
that for any point on the texture there exist many others with similar
reflectance properties. We show that the texturedness assumption
allows reflectance capture using only two images of a planar sam-
ple, taken with and without a headlight flash. Our reconstruction
pipeline starts with redistributing reflectance observations across the
image, followed by a regularized texture statistics transfer and a non-
linear optimization to fit a spatially-varying BRDF (SVBRDF) to
the resulting data. The final result describes the material as spatially-
varying, diffuse and specular, anisotropic reflectance over a detailed
normal map. We validate the method by side-by-side and novel-view
comparisons to photographs, comparing normal map resolution to
sub-micron ground truth scans, as well as simulated results. Our
method is robust enough to use handheld, JPEG-compressed pho-
tographs taken with a mobile phone camera and built-in flash.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Reflectance;

Keywords: appearance capture, reflectance, SVBRDF, texture
synthesis

1 Introduction

Spatial variation in surface reflectance plays an immense role in the
perceived realism of imagery. Traditionally, reflectance modeling
has concentrated on the angular aspects of scattering (BSDF), build-
ing models that faithfully reproduce the shape and color of reflection
and transmission from a single, uniform, material. However, sub-
tle changes in reflectance, for instance those induced by wear and
tear, scratches, and the like, are required to really bring a surface
to life. Even simple angular reflectance models can produce results
of impressive realism when their parameters are carefully varied
across surface points. This observation has relatively recently led
to the search for efficient and light-weight methods for capturing
models that reconstruct such variation, as spatially-varying BRDF
(SVBRDF), from real surfaces [Dong et al. 2011; Wang et al. 2011;
Aittala et al. 2013].

In this paper, we describe a combination of acquisition setup design,
simplifying material assumptions, and reconstruction algorithm that
leads, we believe, to the lightest-yet setup for photographic capture
of a full SVBRDF model including albedos, glossiness, and normals.
This is made possible by assuming that the SVBRDF is part of a
large and important class of “texture-like” materials that consist
of elements or structures that (randomly) repeat over the surface,
also known as stationary materials. This allows us to combine
information across the material examplar.

Our input consists of two approximately fronto-parallel images of a
relatively flat material sample, one taken in the ambient illumination,
and another taken with a flash located close to the lens, that is,
under headlight illumination (see Figure 1); in practice, we use a
handheld Apple iPhone 5 and perform no calibration of any kind.
The flash image provides local illumination whose relative direction
of incidence varies across the surface, thus providing us with lighting-
dependent samples of the texture’s reflectance. The second image
serves as a guide that allows us to identify similarities across the
texture, under the more homogenous ambient illumination.

We present a multi-stage reconstruction pipeline that starts with
gathering reflectance observations from across the image to augment
information content at one representative image region, followed by
structural regularization and subsequent texture statistics transfer,
before we perform a non-linear optimization to fit a SVBRDF to the
resulting data. From here, we propagate back this partial solution
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from the reference region to the remainder of the input image. The
final result is a photo-realistic SVBRDF that describes spatially-
varying, diffuse and specular, anisotropic reflectance over a detailed
normal map across the entire input image.

Many of our design decision are driven by the general goal of en-
abling photorealitic SVBRDF capture with a minimal acquisition
effort. To maximize usability, we further decided to use consumer-
grade mobile-phone photography. This choice introduces additional
error sources, which is why we paid particular attention to robustness
to errors in the data. This pays off in a reconstruction pipeline that,
so far, has not failed in a significant way; failure cases are limited
to materials that break our model assumptions, and even then, the
method fails gracefully. We will show representative reconstruction
results and provide, as supplemental material, results for the full
set of any materials we acquired so far, to demonstrate the reliable
robustness of the method.

2 Related Work

In principle, capturing a representation of surface reflectance of
an arbitrary object requires densely sampling its high-dimensional
reflectance function [Weyrich et al. 2009], which is, in its generality,
a formidable task that requires extensive hardware and effort. In this
section, we focus on various approaches to drastically reduce the
acquisition complexity.

Reflectance Sample Fusion Many approaches reduce acquisi-
tion effort by combining reflectance measurements from multiple ob-
servations, in turn requiring fewer input images. Marschner [1998]
showed that for a known (convex) object of constant BRDF, a single
image contributes many BRDF samples, as each pixel observes a
local surface frame under a different relative orientation to light
source and camera. Lensch et al. [2003] and Goldman et al. [2005]
carry this further by assuming that each surface point be a linear
combination of very few unique basis BRDFs. These were important
steps toward practical SVBRDF reconstruction, but still require tens
of input images. Reflectance Sharing [Zickler et al. 2006] treats SV-
BRDF reconstruction as a scattered-data interpolation in the mixed
spatio-angular domain. The method assumes spatial coherence of
reflectance and fuses angular information across neighboring points
on known geometry. While only requiring a single input image, the
method trades spatial for angular resolution. Dong et al. [2010] com-
bine separate, dense, 4D BRDF measurements of few representative
points with spatially dense, angularly sparse, observations across a
material sample. Wang et al. [2008] combine partial observations
of microfacet distributions from different surface points based on
similarity of their overlapping parts. All of the above methods rely
on additional geometry or reflectance information — a requirement
we wish to avoid.

Strong Model Assumptions Another avenue toward light-
weight appearance acquisition is to restrict the range of reflectance
phenomena supported. For instance, the intrinsic-image ap-
proach [Barrow and Tenenbaum 1978] aims at reconstructing diffuse
albedo and normals for every pixel in a single input image. While
great progress has been made in terms of stability and accuracy (e.g.
[Barron and Malik 2015]), the Lambertian assumption makes these
methods ill-suited for our purpose.

Glencross et al. [2008] use pairs of flash and no-flash images as input
and use the additional information to drive a dark-is-deep heuristic to
reconstruct plausible depth maps. While their input data are virtually
identical to ours, their method is limited to Lambertian materials.
CrazyBump and AppGen [Clark 2010; Dong et al. 2011] combine
intrinsic-image methods with user edits to create plausible spatially

varying reflectance models. In contrast, we do not require user input
to specify lighting, material similarities, or specular parameters.

Texture Synthesis There is a rich literature on texture models and
synthesis, a full review of which is beyond our scope. We combine
the strengths of both statistics-based and exemplar-based synthesis
algorithms by first employing ideas similar to “guided synthesis” for
establishing a rough relighting, and then refining the result using
a statistics-based approach [Heeger and Bergen 1995; Efros and
Freeman 2001; Hertzmann et al. 2001].

Appearance Capture of Texture Interestingly, only few works
directly exploit properties of textured surfaces for acquisition. Wang
et al. [2011] take advantage of the notion of stationarity of the spatial
structure to drastically simplify the acquisition of purely specular
surfaces: from a single image of a the reflection of a step function
off the surface, they reconstruct statistical properties of meso and
microgeometry, which allows them to synthesise novel instances of
the stochastic material. However, their approach can only handle a
very narrow class of materials and spatial structures.

Ngan and Durand [2006] present a light-weight setup for BTF cap-
ture [Haindl and Filip 2013]. In their system, they use the Heeger-
Bergen algorithm [1995] to transfer the statistics of one texture
sample onto a low-quality version of another realization of the as-
sumedly same texture. We borrow from that approach to transfer the
detailed image statistics of a textural sample onto a coarse approxi-
mation of a similar texture.

Schröder et al. [2015] reconstruct the visual appearance of woven
cloth by reverse-engineering its physical structure from a single
image. They explicitly exploit the repetitive texture to fuse infor-
mation across regions of similar structure. This has analogies to
our structure-preserving reflectance transport; however, in contrast
to our approach, their detection of recurring information is strictly
limited to regular patterns and does not exploit variations in the local
view and light vectors.

3 Designing an Acquisition System

Our goal is to maximize convenience of acquisition and yet obtain
rich SVBRDF reconstructions. We identify the following desirables:

1. Light, mobile acquisition with a single, off-the-shelf device.

2. Convenient capture: few images and no need for calibration.

3. Under these constraints, unprecedented range of surfaces that
can be captured.

We will now derive a system design that optimizes these constraints.

3.1 Hardware

Desirable 1. leads us to choose a mobile phone for acquisition, which
offers an on-board flash for controlled illumination1. This choice has
convenient properties. First, mobile-phone flashes are small enough
to allow a point light assumption, which allows for a much simpler
image formation model than that required by using an non-point-like
emitter. Second, a phone’s flash is mounted close to the lens, so that
its effect approximates headlight illumination very well.

1An alternative would have been to use the phone’s screen for illumination
and to image using its front-facing camera, as proposed by Wang et al. [2011],
but our tests led us to conclude the brightness of the screen is insufficient
and leads to extremely low-quality, noisy images on current devices.
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Figure 2: The imaging setup. A camera with a flash attached near
its center of projection (top) images an approximately flat material
sample (bottom) in a roughly fronto-parallel projection. The pixels
in input images are binned in constant-sized tiles. The surface points
in each tile are lit and imaged from roughly the same direction
because the flash is mounted close to the camera.

Note, however, that the use of a stock mobile phone implies inferior
data quality compared to, for instance, cameras with RAW support,
which requires a robust reconstruction pipeline.

3.2 Acquisition Procedure

In order to obtain an undistorted image of the material sample (De-
sirable 2), we require the phone to be held roughly parallel to the ma-
terial sample, see Figure 2. We take one image with the flash turned
on (the flash image). This results in a range of viewing and lighting
directions symmetric around the material sample’s (macroscopic)
normal, and due to the geometry of the imaging setup (Figure 2),
each pixel in the flash image is an approximate retro-reflective mea-
surement of the local reflectance function that combines the effect of
surface normal and BRDF. Note that the imaging geometry remains
identical regardless of the shooting distance; the range of observed
angles is determined by the camera field of view (up to 33 degrees
from the pole on iPhone 5). This also sets a rough upper limit on the
width of the specular lobes we can reliably observe.

Even if the material is stationary, its appearance in the flash image
may vary dramatically with angle of incidence, making it hard to
reliably identify surface points with similar local reflectance. To
aid reliable identification of points across the sample further on, we
require a second image, taken from the same position, with the flash
turned off, using only ambient illumination (the guide image).

Some representative flash and guide images are shown in Figure 3.
We allow the images to be taken handheld (most of our results are),
and register the two images before processing using a simple ho-
mography computed from manually specified point correspondences.
The user also specifies the approximate characteristic size of the
repeating texture with a few mouse clicks, and the image is then
organised in regular tiles of approximately that size, as described in
Section 4.1.

3.3 Material Assumptions

As our input is constrained to the retroreflective slice of the BRDF,
we observe little information about Fresnel effects, or shadowing and
masking. We hence choose a reflectance model that assumes typical
behavior for these effects, while maintaining sufficient generality to
fit to a wide range of observed microfacet distributions. In particular,
we choose a microfacet BRDF model that includes both diffuse
and specular reflectance, long-tailed reflectance lobes (kurtosis) and
anisotropy in both meso- and microgeometry (Desirable 3). These
effects typically show up well in retro-reflective point measurements,
and their spatial variation is often the key defining characteristic

Flash Guide

Figure 3: Representative input data.

of a given surface material. Full model details are described in the
technical sections below.

Given that we have only one observation per pixel, we inevitably
need to combine observations across multiple surface points (viewed
and lit from different directions), of which we have to assume that
they share similar reflectance properties. Luckily, most real-world
spatially-varying materials exhibit a large degree of redundancy, that
is, for each point on the material, there are others on the same mate-
rial sample that exhibit identical, or very similar, surface properties
(i.e., normal and BRDF). Such materials fall into the category of
stationary textures, which cover the spectrum from repetitive pat-
terns to stochastic textures. This assumption allows us to combine
multiple observations into joint reflectance hypotheses. Specifically,
we require that the material contains sufficient self-similarity so
that within any large enough region, small neighborhoods of high
similarity re-occur. Furthermore, we assume that the image can be
divided to such regions by regular tiling, and that similar points
can be identified by the images of their local neighborhoods under
ambient illumination.

Lastly, we assume an approximately planar material sample, to
eliminate the need for geometry reconstruction.

4 Reconstruction

Our goal is to reconstruct an independent parameterized reflectance
function (normal plus anisotropic BRDF) at each pixel observed in
the guide image from reflectance data in the flash image.

As our input data do not contain enough information to fit an SV-
BRDF to all of the pixels directly (there is only one measurement per
pixel!), we first concentrate information from across the flash image
at a representative user-chosen master tile of the image, synthesizing
additional reflectance samples at each of its pixel locations. This is
tantamount to relighting the tile, that is, to creating novel versions of
the master tile with altered illumination. Following the terminology
of Lensch et al. [2006], it can also be seen as synthesizing lumitexels
of reflectance samples for each pixel location on the master tile.

We create these lumitexels in a three-stage procedure. The first stage
exploits that, according to our assumptions about the material’s
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Figure 4: Steps in the algorithm. 3×3 grids of tiles are representative of the full set of tiles as organised in the flash image (each corresponding
to a unique half-way vector). Note that the choice of master tile is arbitrary; it does not even have to correspond to one of the input tiles.

composition and the tile sizes, each tile contains roughly the same
“material points”, just rearranged in a potentially random manner.
This means that, by identifying corresponding points between the
master tile and each of the other tiles (not necessarily a one-to-one
correspondence), we can share measurements across the image, i.e.,
relight the master tile by transporting reflectance samples from other,
correspondingly lit, tiles (see Section 4.2.1). This already leads to
coarsely accurate lumitexels for the master tile, but noise, jitter
and other artifacts remain. We hence regularize the result using a
preliminary SVBRDF fit, followed by recreating the lumitexels from
the fitted SVBRDF, which removes most artifacts but introduces
blur.

In the second stage, we refine the relit versions of the master tile
by transferring texture statistic from other, similarly lit, regions in
the original flash image (Section 4.2.2). Roughly speaking, this
amounts to copying the high-frequency detail from the source tile
onto similar-looking blurry structures in the master tile. As we will
show, this results in high-quality lumitexels that are consistent in
both spatial and angular domain and faithfully represent the master
tile’s appearance. Once the master tile has been augmented with
lumitexels that way, we use a non-linear optimizer to fit an analytic
SVBRDF model.

In the last stage, we then appropriately reverse-propagate the solu-
tion back to the full image using a guided texture transfer approach,
yielding a full SVBRDF decomposition for all pixels in the input
image (Section 4.2.3).

We will describe our SVBRDF model in more detail in Section 4.3;
the fit by non-linear optimization, which plays a central role in
keeping our reconstruction robust, is described in 4.4.

4.1 Data Organization and Flow

To simplify both data representation and problem formulation, we
first divide the images up into a regular n×m grid of square tiles.
We require each tile to be large enough to fully capture the texture’s
statistic and structural characteristics. In our experiments, we use a
tile size of 192×192 pixels. As the frequency of textural repetition
varies depending on the material and the shooting distance, we allow
the user to specify the suitable number of tiles. We typically use
around 12×8 tiles. The input image is scaled to match number of
tiles and the tile size.

The tiling and imaging setup together suggest a natural data-driven
representation of reflectance. As seen in Figure 2, each tile in the
flash image sees the surface under a roughly constant light and view
direction, i.e., at a unique half-vector. If we denote the guide image
by G(x,y) and the flash image by F(x,y), where x and y are integer
pixel indices, the tiling allows us to re-index all pixels in the input
images as G(i, j,s, t) and F(i, j,s, t), where i, j identify a tile (and
hence half-vector) and s, t identify the pixel within the tile. In this
representation, each sub-image F(i, j, ·, ·) provides, for all surface
points imaged in the tile, a single retroreflective measurement of the
local reflectance for that particular half-vector.

An example input dataset is illustrated in Figure 4a. The three-by-
three image matrix shows a subset of the flash image tiles. It can be
seen that although the tiles evidently consist of the same material,
the spatial structures within the tiles are not in a similar arrangement.
On the other hand, we can observe how the lighting condition is
roughly equivalent within a tile.
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Figure 5: Matching source tiles and the master tile. For each pixel in the master tile guide image (left), the best neighborhood match in the
source tile guide image is computed by greedily selecting the pixel with the closest BRIEF descriptor distance. When taken over all pixels,
this forms a transport mapping, visualized here by color-coding the pixel offset to the match in red and green channels. When the transport
map is applied to the flash image of the source tile, the result is a an image that has the structure of the master tile, but illumination roughly
matches that of the source flash tile. Despite some smoothing, the transferred appearance matches the source flash tile well, and the change
in appearance compared to the original flash-lit master tile can be dramatic. The smoothing effect and how it is subsequently removed is
visualized in Figures 4 and 6.

Algorithm Steps Using this notation, the data flow and individual
steps of our algorithm can be outlined as follows (cf. Figure 4).

1.1 Establish pixel-to-pixel correspondences between the master
tile and every other image tile (i, j).

1.2 Using the correspondence, reshuffle each tile’s pixels
F(i, j, ·, ·) to populate a new F1(i, j, ·, ·). Now all the lumi-
texels F1(·, ·,s, t) are coarsely consistent with the master tile.

1.3 As a regularization, fit an SVBRDF to the data from the pre-
vious step. This results in a spatially and angularly consistent
but blurry SVBRDF. Expand the result of the fit back into a
sampled image F2(i, j,s, t).

2.1 For each tile (i, j), transfer the image statistics from the in-
put photo F(i, j, ·, ·) to F2(i, j, ·, ·), and denote the result by
F3(i, j, ·, ·). This restores much of the “gist” of the original
flash image tile into the relit master tile, while accurately main-
taining its spatial structure.

2.2 Perform a final SVBRDF fit to the lumitexel array F3(i, j,s, t).

3 Optionally, either transport the SVBRDF parameters from the
master tile back onto the entire guide image by effectively
reversing the first step, or use texture synthesis to generate an
arbitrary amount of new texture based on the master tile.

Figure 4 and Figure 6 illustrate the operations on an example dataset.
The remainder of the section describes these steps in detail.

4.2 Method

4.2.1 Reflectance Sample Transport

In the first step, we put the pixels of the master tile in correspondence
with the pixels of each input tile. This allows us to relight the
master tile, thus synthesizing dense lumitexels at every point. To
be successful, the measure of correspondence between points will
have to consider the similarly of the surrounding neighborhoods,
as matching single pixels by intensity alone would be meaningless.
Because matching distant regions in the flash image is difficult due to
significant differences in shading, we perform it in the guide image,
which is mostly unaffected by lighting changes, and assume a strong
structural match between two neighborhoods implies the points
share a common reflectance function. In broad terms, this closely
resembles guided texture synthesis [Hertzmann et al. 2001], but
without considering neighborhood constraints in the target image.

Master tile
After init.
transport

After 1st
BRDF fit

After
H-B

After
final fit

Figure 6: Sampled lumitexel representation of reflectance functions
for four representative points over the course of the algorithm. For
each point, the reflectance data are represented as a sampling over
microfacet orientations.

A straightforward implementation would compare neighborhoods
using squared pixelwise differences in a window. In our experiments,
however, this approach turned out too brittle: small neighborhood
window sizes were easily thrown off by noise, blur, color variation
and random irregularities in texture, whereas larger windows tend to
localize small details poorly, and struggle with non-rigidly distorted
features.

Instead, we perform matching by comparing local feature (neigh-
borhood) descriptors. We use the BRIEF descriptor [Calonder et al.
2010], for which details are given in Appendix A. It is insensitive to
small differences in lighting and image quality, but respond sharply
to different spatial arrangements of pixels. Furthermore, it is fast to
compute and compare.

To further increase the quality of the relighting, we also copy image
gradients in addition to the pixel values, and perform final reconstruc-
tion by solving a screened Poisson equation that balances between
matching intensities and integrated gradients [Agarwala et al. 2004].

The entire process is illustrated in Figure 5. Because the matches are
computed for all master tile pixels independently, this problem par-
allelizes perfectly. Conretely, denoting the descriptor by BRIEF, we
loop over all tiles i, j, and for each pixel s, t in the master tile, seek
the pixel i, j,s′, t ′ whose descriptor BRIEF(i, j,s′, t ′) best matches
that of the master pixel BRIEF(s, t). Once found, we copy the inten-
sity from the source flash tile into a new array to the corresponding
position, i.e., F1(i, j,s, t)← F(i, j,s′, t ′).
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The result of the matching is a set of coarsely-relit master tiles,
denoted F1(i, j,s, t). This is visualized in Figure 4b. As can be
seen upon close inspection, the tiles in the result all have the same
spatial structure — that of the master tile — and a lighting roughly
in line with the source tiles. However, perfect matches between
the neighborhoods cannot be expected, not the least due to the
fixed pixel grid, and artifacts remain everywhere due to imperfect
matching. The combined effect of such error sources produces
spatial and angular jitter. The angular nature of the error is visualized
in Figure 6.

Regularization by SVBRDF Fit After the transport, we regularize
the relighting result by fitting an SVBRDF to the enriched master
tile, using a non-linear optimizer that yields spatially consistent
decompositions (Section 4.4). The spatio-angular jitter present in
the data blurs the SVBRDF both spatially and angularly, suppressing
fine details (Figure 4d); however, we observe that the resulting model
is structurally very consistent, that is, normals correlate well with the
master tile’s mesostructure and reflectance lobes capture the relevant
trends. This is illustrated in Figure 6.

Before further processing, we convert back the SVBRDF to the
original sampled representation of multiple relit master tiles and
denote the result by F2(i, j,s, t).

4.2.2 Texture Statistics Transfer

In order to further improve the relighting result, faithfully matching
the target appearance, we borrow from Ngan and Durand [2006],
who, too, acquire lighting- and viewing-dependent images of (lit-
eral!) material tiles. Drawing on their richer data set, they employ
linear interpolation between lighting directions to approximately
relight the master tile. To mitigate the resulting ghosting artifacts,
they use texture statistics transfer to modify the (approximately)
relit master tile to exhibit texture statistics that they interpolated
from other tile’s statistics, using Heeger and Bergen’s histograms-
of-steerable-pyramids approach [1995].

We follow a very similar approach, by seeding Heeger-Bergen tex-
ture synthesis [1995] with our coarsely relit master tile, letting the
algorithm iterate over that tile until its histograms of multi-scale
steerable-filter responses match the respective histograms of the tar-
get appearance. In order to maintain coherence across color channels,
we use a method by Rabin et al. [2011], who propose a computa-
tionally efficient simplification of the Wasserstein optimal transport
metric and use it to formulate an efficient multichannel version of
the Heeger-Bergen algorithm. Concretely, we run, for each half
vector i, j, this multi-channel Heeger-Bergen algorithm that uses the
F2(i, j, ·, ·) as the seed, and matches its pyramid statistics with the
corresponding tile in the input flash image F(i, j, ·, ·). The result is
denoted F3(i, j, ·, ·).

In theory, Heeger-Bergen histogram matching does not guarantee to
stay close to its seed image; however, for seeds whose histograms
are sufficiently close to the target statistics, the histogram-matched
output preserves the input structure. Because, furthermore, our seeds
for the different lighting conditions all draw from the same, slightly
blurry but spatially and angularly consistent, SVBRDF, the different
independent texture syntheses maintain mutual consistency. Ac-
cordingly, the resulting per-point reflectance samples exhibit much
less jitter. In particular, the texture synthesis “recovers” character-
istic high-frequency details while preserving spatial structure, see
Figure 6. The result is shown in Figure 4e: the dull appearance
apparent in Figure 4d has been transformed into a new, crisp one
that matches the feel of the input flash tiles (Figure 4a) very well,
while maintaining the spatial structure of the master tile.

Together, this allows us to fit an SVBRDF, for the second time,

which now leads to a crisp reconstruction consistent with the master
tile. Our goal of obtaining an SVBRDF decomposition of the master
tile is now achieved. (In the example in Figure 4, the resulting relit
tiles are hardly distinguishable from the Heeger-Bergen results and
not shown.)

4.2.3 Reverse Transport

At this stage, we have resolved the material parameters for all points
in the master tile. To recover the parameters for the rest of the
surface, we essentially perform the reflectance sample transport in
reverse direction, this time transporting the parameter values from
the master tile to the other tiles. Note that we cannot use the transport
maps obtained in the first stage of the algorithm because they are
not one-to-one, but must recompute them in the opposite direction.

As the resulting transport map may be somewhat noisy and irregular,
we first apply a simple windowed median-like filter to increase
coherence and clear up the boundaries between the copied regions.
Each pixel in the transport map is a 2D shift vector. We first compute,
for each pixel, the sum of its `1 distances to all pixels in a 7× 7
sliding window. In a second pass, we replace each pixel with the one
from its neighborhood that has smallest summed distance stored in
the first pass. An example is shown in Figure 7. The resulting map
copies consistent patches with clear boundaries. Like in the forward
transport pass, we perform the transport in the gradient domain to
ensure better continuity.

Transport map, filteredTransport map, initial

Figure 7: The transport mapping used in initial transport (left)
is produced by the nearest-neighbor BRIEF matching. For final
backpropagation of the SVBRDF parameters onto the entire source
image, we use a filtered map (right) that yields more consistent
results by keeping spatial structure more intact.

Alternatively, we can produce an arbitrary amount of the texture by
using the master tile as an exemplar for a classical texture synthesis
method, such as Image Quilting of Efros and Freeman [2001]. While
this is straightforward to do, we leave this outside our scope.

4.3 Material Model

Our BRDF model is inspired by “BRDF Model A” of Brady et
al. [2014]. Their model is simple but shown to fit accurately to a
wide range of measured BRDFs. It also contains a kurtosis-like
parameter that controls the pointiness of the specular lobe – an effect
that is often clearly visible in our input data. We extend it with a
simple anisotropy model.

Specifically, our model consists of the parameters

ρd ∈ R3
+ diffuse albedo (RGB)

ρs ∈ R3
+ specular albedo (RGB)
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S ∈ SPD2 specular glossiness and anisotropy
α ∈ R+ specular pointiness
n ∈Ω+ surface normal unit vector

where Ω+ is the upper unit hemisphere and SPD2 is the set of
2× 2 symmetric positive definite matrices. In addition, we use a
global (not spatially varying) parameter σ f ∈R+ to model vignetting
effects due to camera and light. The parameters, with the exception
of the glossiness and anisotropy S and specular pointiness α , are
entirely standard. Let h be the tangent plane parameterized version
of the half-vector. We define our microfacet distribution (NDF) as

D(h) = exp
[
−(h>Sh)α/2

]
. (1)

Notice that if S is a multiple of the identity matrix, this reduces to a
tangent-plane parameterized version of the NDF of “BRDF Model
A” of Brady et al. [2014]. However, with S a general SPD matrix,
the NDF is stretched, and the BRDF becomes anisotropic. This
parameterization of anisotropy has the advantage of being unique:
for every stretch (linear transformation) of the lobe, there is exactly
one SPD matrix, and vice versa. This makes it well-behaved in
optimization and interpolation.

Note also that shadowing/masking effects of “BRDF Model A” van-
ish at backscattering angles, and the Fresnel term reduces to constant,
leaving the NDF as the only term in the specular component. Our
measurements carry no information about these effects. Hence,
during fitting we evaluate the BRDF model as a sum of this NDF
and a constant diffuse term, weighted by the respective albedos.
The rendered value is modulated by the inverse square distance,
cosine foreshortening, and a Gaussian vignetting term of width σ f .
Appendix B provides details on coordinate systems and other de-
tails necessary for evaluating the full image formation model during
optimization.

4.4 Fitting SVBRDFs by Optimization

At two stages in our algorithm, we are presented with the problem
of robustly fitting a parametric SVBRDF model to given input data
represented as sampled lumitexels. To encourage spatially consistent
solutions, we perform the data fitting jointly between all pixels and
use priors that bind the solutions of neighboring pixels together,
much like Aittala et al. [2013]. Like them, we use the Levenberg-
Marquardt algorithm for jointly minimizing the data fit error and the
prior penalties.

Even though conceptually simple, the nature of our input data makes
the fitting task very difficult. The input contains

• unknown vignetting from both non-uniform flash emission and
the sensor, making the observations at the sides of the image
highly unreliable;

• unknown non-linear color correction and contrast enhance-
ment, and possibly other image processing operations, distort-
ing the observed profiles of the reflectance lobes and modifying
their relative intensities;

• overexposure (clipping), i.e., no precise relative brightness
information for some pixels.

This necessitates priors other than simple spatial smoothness. On
the highest level, our data fitting procedure aims to decompose the
input into a sum of very wide diffuse lobe and a relatively narrow
specular peak while tolerating the strong distortions present. Our
reflectance model is co-designed with priors that encourage plausible
separations; for instance, we favor a diffuse explanation to a wide
specular one when the two are ambiguous. We also use robust error

metrics (the Huber loss function) to downweight the effect of outlier
values in the data. Complete details are given in Appendix C.

5 Results

5.1 Acquisition

In all of our experiments, we used an iPhone 5 camera with the
default camera app (iOS 7.1.1). Having been a reasonably high-end
camera two years ago, we believe it to be very representative of a
generic mobile phone camera today. It features an 8 mega-pixel sen-
sor and a white LED flash, 9.45 mm off the camera lens. We work
directly on JPEGs shot with the built-in interface. The only image
processing we apply from our end is inverse gamma correction (ex-
ponent 2.2) of the 8-bit JPEG images after reading; note that this still
does no guarantee truly linear data. We have no control over white
balance and ISO, and all images are selectively, automatically de-
noised (especially under flash conditions) and sharpened [DPReview
2012].

All of our results were obtained from either hand-held photographs
or by supporting the phone on a level surface. No tripods or other
mechanical supports were used. Thus we were able to casually
capture a variety of materials in situ without any accessibiliy con-
straints beyond having to reach out to the material (see Figure 1).
In particular, little care was taken to control the illumination in the
environment, aside from avoiding strong ambient lighting and direct
shadows. This is apparent in the input data (included in supplemental
material).

5.2 SVBRDF Reconstructions

We captured 72 flash/no-flash images for a wide range of materials.
Here, we present and discuss a representative subset of our results;
animated renderings of the complete set of our reconstructions are
provided as supplemental material. Figure 8 shows a subset.

Overview Our inputs feature both metals and dielectrics. The
broad categories include metal, wood, plastic, papers, fabrics,
and leathers. Many materials feature significant anisotropy (e.g.
fabric orange, fabric chair), strong, sharp spatial variations (e.g.
wood dark), and stretch our BRDF+normals assumption due to sig-
nificant interreflection and volumetric scattering (e.g. plastic cutting
and, again, fabrics). Apart from doublets, the results include every
capture we have ever performed, and include materials that strongly
violate our assumptions (e.g. seed).

Despite the above, we observe that our method is stable, and pro-
duces excellent to reasonable results for most inputs. Overall, we
feel the results are photorealistic and convey the look and feel of
most input materials faithfully. We find this surprising given the low
quality and limited amount of input data. The quality of the input
data varies greatly across the datasets; we invite the reader to exam-
ine the unprocessed input images and the videos in the supplemental
material.

Analysis The results feature plausible spatial variation in all pa-
rameters. Even though difficult in our imaging setup, diffuse-
specular separation often succeeds well (cf. fabric orange, fab-
ric chair), although sometimes crosstalk is observed (paint black).
At times, extremely fine spatial detail may suffer. For instance, the
photographs of book brown show a tiny regular structure on top of
the otherwise stochastic material, which is mostly lost in the recon-
struction. Despite this, the resulting decomposition is reasonable.
Some inputs, such as lacquered wood (e.g. wood door), feature
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Figure 8: Model fits and relit master tile for head-on and side views. All images, including many more results, can be found in the supplemental
material. The glossiness-anisotropy matrix S is symmetric positive definite, and hence uniquely encodes an anisotropic scaling. We visualize
the direction and strength of the anisotropy as hue and intensity of the anisotropy map, and the overall scaling factor as the glossiness map.
Higher values indicate a glossier material.

110:8        •        M. Aittala et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 110, Publication Date: August 2015



strong dual-lobed reflectance with a sharp specular on top of the
anisotropic reflection from the polished wood fibers. This subtlety
is lost in our model, but the resulting rendering still conveys much
of the feel of the material.

We chose to keep anisotropy enabled for all datasets regardless of
whether they seem to exhibit it.

The optimizer often introduces small amounts of anisotropy even
for isotropic materials. Typically this occurs in regions of rapid
normal variations or occlusions, where no unique normal direction
sufficiently characterizes a single pixel, and the sub-pixel detail is ab-
sorbed into the microgeometry as anisotropy. This behavior appears
neutral or beneficial. Note that these effects are also responsible for
“true” anisotropy, as can be seen in Figure 11: clearly oriented micro-
geometry visible in the ground truth scan is appropriately captured
in our anisotropy maps.

Our algorithm is, by design, robust to small-to-moderate violations
of the stationarity assumption. With increasing non-stationarity,
the results gradually lose their expressive power, but we have not
observed badly unstable results. Figure 9 below shows an example
(metal gritty) whose structure has larger-scale variations than those
captured in the tiles. The result is reasonable, but does not generalize
well to regions that are clearly different from the rest. This behavior
is typical for our results.

In
pu

t
So

lu
tio

n

Photo (center) Render (center) Photo (side) Render (side)

Figure 9: In some of our inputs, the stationarity assumption (“tiles
feature same material points”) is not satisfied at the scale imaged.
The overall structure in metal gritty is roughly homogeneous, but
there is significant low-frequency variation in smoothness and bumpi-
ness. The solution tolerates this and captures the average appear-
ance, but cannot reproduce the nonstationary parts (bottom row).

Failures We have categorized some datasets as clear failure cases
in the supplemental material videos. Typically they strongly violate
our assumptions. The violations include significantly non-planar
geometry, interreflections, and non-stationarity at the scale of the
tiling. The seed set features all of these. While the decomposition
may look reasonable at first sight, it contains a strong specular “film”
on top of the entire tile. Furthermore, the normals, while somewhat
resembling the seeds, are not captured well, and the relighting result
(cf. video) is not faithful.

In practice, our method is rather robust against shading changes in
the guide image caused by non-uniform illumination. However, oc-
casionally the illumination in the guide image is non-uniform enough

to significantly change the appearance of the exemplar and throw
the transport step off. This results in visibly dull, not very faithful
reconstructions (e.g. leather black, cf. videos), or rough spatial
variations (e.g. plastic weave silver). We encourage examination of
the flash-guide pairs in the supplemental material.

Implementation All results have been computed using the param-
eters given in Appendix C. No per-input tweaking of prior weights
etc. has been performed. Our implementation combines a CUDA
implementation of the transport step with unoptimized and non-
parallelized Matlab implementations of the Levenberg-Marquardt
fitter and Heeger-Bergen synthesis. Processing takes roughly three
hours per dataset on a fast quad-core desktop PC equipped with an
NVIDIA Quadro K6000 GPU.

5.3 Verification

Side-by-side Figure 10 shows side-by-side comparisons between
the input flash images, relit flash images, and flash images taken
under novel view and novel illumination. We observe qualitatively
good matches between the inputs from the capture view. At times,
the relative strengths of the specular and diffuse components have
been misidentified by the optimizer due to clipping, vignetting, and
so on. While the original view may yield a faithful match, a less
pointy, broader specular lobe may become apparent when observed
under novel angles (e.g. the tape silver2 set). In such cases, simple
global adjustments of the resulting material parameters (reweighing
diffuse vs. specular and adjusting the specular pointiness) often
result in a good match (rightmost column).

Ground Truth for Normal Maps We obtained submicron-
accurate heightmap scans from GelSight, Inc. for a set of input
materials [Johnson et al. 2011]. We converted the height maps to
normal maps, and compare to our reconstructions in Figure 11. As
can be observed, our method captures the normals generally well.

The plastic cutting set features highly glossy bumps. The bumps’
sides are so steep that the specular reflection off them is not entirely
captured in the flash photo, i.e., our input contains no information
about a part of the bumps; furthermore, the sample includes inter-
reflections and subsurface scattering not consistent with the model.
Our algorithm fails gracefully and produces a flat normal field for the
outer rim of the bumps. However, most of the bumps are recovered,
and the resulting relightings are rather faithful. The physical scale
of the bumps is approx. 1 mm.

The fabric zigzag set demonstrates capture of anisotropy due to
the strongly oriented microgeometry in the weaves (visible in the
inset). While our input definitely does not have sufficient resolution
to capture this behavior in the normal map, the resulting anisotropic
reflectance is captured well by our per-point anisotropy term (bottom
right).

Stability Analysis by Synthetic Input To test the stability of the
reconstruction algorithm, we simulated different classes of error
sources. We first generated a hypothetical SVBRDF decomposition
(Figure 12, left column) in a paint program. We then rendered
simulated flash and no-flash images from the data, applying various
corruptions, and running the decomposition algorithm on the inputs
to study their effect on the result.

Given an HDR flash-no-flash pair rendered using the ground truth
SVBRDF, the reconstruction algorithm produces the result in the
second column. The top rows show crops of the flash and guide im-
ages used as an input to the algorithm. Although not quite identical,
the output is faithful to ground truth. A slight amount of crosstalk
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Figure 10: Relighting vs. photograph for novel view and illuminat-
ion. See text for description.

GelSight Our result GelSight Our result

Figure 11: Comparison of normal recovery to submicron-accurate
GelSightTM scans for book black, book wine, leather brown, plas-
tic cutting, and fabric zigzag. The pitch of the bumps in plas-
tic cutting is about 1 mm. See text for analysis of plastic cutting.
Bottom row: The fibers in fabric zigzag are strongly oriented alter-
natively in 90 degree angles at different points in the weave (blow-up
of GelSight scan, 2nd from right). While our resolution is insufficient
to reproduce this microscopic detail in the normal map, the resulting
large-scale anisotropic reflectance is captured by the spatially vary-
ing anisotropy map (right). Cf. caption of Figure 8 for a description
of the anisotropy visualization.

is observed between diffuse and specular, and some anisotropy has
been introduced.

The third column shows a reconstruction from a color-processed
noisy version of the original input. The input images have been
processed with a non-linear contrast-boosting S-curve, typical to
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Figure 12: Resiliency to input corruption. Top two rows: close-ups
of synthetic input data. The images were rendered from ground truth
SVBRDF parameters (leftmost column). Input renderings are shown
as-is, with color processing and added noise, with overexposure,
and with all corruptions applied at once (including also near-field
illumination, ambient lighting and misalignment, not shown sepa-
rately). Bottom five rows: SVBRDF decompositions computed using
different versions of the inputs. The results show the solver is stable.
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camera processing pipelines. Besides distorting albedo levels, the
camera’s internal processing tightens the specular highlight some-
what, leading to higher glossiness in solution. Nevertheless, the
overall visual appearance and spatial structure of the material is
preserved well.

The fourth column shows the effect of severe overexposure of the
flash image, which sometimes occurs in LDR photos of glossy
materials. We find that the reconstruction tolerates the partially
missing data without introducing notable artifacts, and absorbs the
higher intensity into albedos.

Finally, the rightmost column shows the combined effect of these
and several other distortions: spatially mismatched flash and no-flash
images due to slight offset and zooming, ambient light in the flash
photo, and near-field illumination in the guide photo. While naturally
adapting to the changed inputs, the reconstruction still resembles
the ground truth well, and we conclude the optimizer is relatively
robust. The full set of input images and rendered results of these
experiments are included in the supplemental material (synth *).

Miscellaneous Experiments. We have tested the method with
linear RAW image input from a Canon 5D Mk III SLR camera.
Figure 13 shows a comparison between iPhone and DSLR results for
two datasets. The DSLR results are somewhat cleaner and sharper,
and show different albedo levels due to lack of color processing.
Both effects are expected. Otherwise, the results agree well. We also
shot the same dataset from two distances, near and far, and found
that the solutions match well, resolution notwithstanding. Please see
the supplemental material for results on this experiment.
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Figure 13: Comparison to raw DSLR input data. Top rows show
two reconstructions for book wine, shot with iPhone 5 and Canon
EOS 5D Mk III. Bottom rows show similar results for fabric zigzag.

6 Conclusion

We have described an algorithm that is able to recover rich models of
spatially-varying reflectance (SVBRDF) from flash-no-flash image
pairs for a large class materials that are spatially stationary (self-
similar) in a loosely defined sense. The method is demonstrated
on dozens of real-world data sets, with input photos taken using
an off-the-shelf mobile phone. The results are often excellent, gen-
erally good, and remain mostly reasonable even when our model
assumptions are violated. We find this surprising given the ad hoc,

uncalibrated and low-dynamic-range nature of our setup. We believe
we offer the lightest-yet method for capturing interesting material
models directly suitable for content creation.
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A Feature Descriptor

We use BRIEF features [Calonder et al. 2010] to determine similarity
between points. To consider similarity on multiple scales, we con-
catenate together three BRIEF G II style descriptors with window
sizes S of 33,17 and 5 and Gaussian blurs of standard deviations of
4, 2 and 0. We compute 96, 128 and 32 bits of these descriptors,
respectively. This is repeated for all color channels, resulting in a
768-bit descriptor for each pixel.

The feature distance is the Hamming distance of the descriptor
strings, normalized by 768. On top of this, we add the absolute
values of pairwise pixel color differences, multiplied by 0.01. This
process defines the descriptor distance ‖B(i, j,s, t)−B(i′, j′,s′, t ′)‖
from Section 4.2.1.

Before computing the descriptors for each pixel, we first normalize
the guide image by subtracting from it a strongly Gaussian-blurred
version of itself, so that any sufficiently large region will have ap-
proximately zero mean. We then pointwise-divide the resulting
image by the square root of a blurred squared image, so that any
large-enough region will have unit variance.

B Image Formation Model

This section defines the coordinate systems used in capture, and how
precisely the BRDF model is evaluated. Set the coordinate system as
follows. The planar sample is lying on the XY-plane with its normal
pointing towards positive Z-direction. As the global scale of the
geometry is inconsequential, the camera is without loss of generality
assumed to face the sample perpendicularly at position E = [0 0 1]>,
and the point light source is assumed to be exactly coincident with
the camera. In practice, as the flash highlight might not be exactly
centered in the input photo, we place the origin at the centroid of
the 5% of the brightest pixels in the image, and establish the plane
coordinates from the known field of view of the camera. At a given
sample plane position p ∈ R2 (and the interchangeable 3D position
P ∈ R3), the rendered pixel intensity is determined as follows.

To be able to flexibly specify the NDF (in particular, its stretching
due to anisotropy), let us transform the half-vector direction into the
local normal-centered coordinate system. We do this by using the
Rodriguez rotation formula to find the shortest-path rotation matrix
R that takes n to [0 0 1]>. Then the half-vector in NDF coordinates
is h̃ := R(E−P)/‖E−P‖. Finally, let h := h̃xy/h̃z be the tangent
plane parameterized version of h̃.

The final pixel color value is now computed as

v(p)I(P)c(P)(ρd +ρsD(h)) ,

where c(P) := max
(

0,n> E−P
‖E−P‖

)
is the cosine foreshortening term,

I(P) := ‖E−P‖−2 is the inverse square distance attenuation, and
the NDF D(h) is defined as in Equation 1. We also include a simple
vignetting term v(p) := exp(−‖p‖2/σ2

f ) that partially models the
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uncontrolled darkening of the image at edges by a Gaussian of
standard deviation σ f .

C Fitting the SVBRDF

The Levenberg-Marquardt algorithm takes in a function R : RK 7→
RL that maps K parameters (unknowns) to L residuals, and finds
a parameter vector X∗ ∈ RK that locally minimizes the sum of
squared residuals ‖R(X)‖2. Let us build a residual function that
describes our desired solution. Although in practice the L-M al-
gorithm requires that we supply the non-squared vector R(X), for
the purposes of exposition we describe here the sum of squared
residuals that we aim to minimize. Each of the summed par-
tial residuals addesses a specific concern; at the highest level, let
‖R(X)‖2 = ‖Rfit(X)‖2 +‖Rpriors(X)‖2.

Unknown variables. In our problem, the vector X of unknowns
contains the per-pixel parameter values x(s,t) for the BRDF model (9
per pixel), and four global unknown parameters g that do not vary per
pixel. Most of the variables discussed in Section 4.3 are constrained
(e.g. to positive values), and we also sometimes wish to limit the
range of values they can assume. However, explicitly constrained
nonlinear optimization is in general difficult. Instead, we choose to
reparameterize our optimization variables in a way that any choice of
real numbers will yield a feasible set of parameters. Our optimization
variables, their mappings to the actual model parameters, and the
initial guesses for optimization are as follows:

variable mapping to parameters initial
ρ̃d ∈ R3 ρd = exp(ρ̃d)
ρ̃s ∈ R3 ρs = exp(ρ̃s,1)CYUV[1 ρ̃s,2 ρ̃s,3]

> [-1 0 0]>

s ∈ R3 S =

[
exp
(

s1 +10−3 s3
s3 s2 +10−3

)]−1
[-3 -3 0]>

ñ ∈ R2 n = [ñ;1]/
√
‖ñ‖2 +1 [0 0]>

σ̃ f ∈ R σ f = exp(σ̃ f )+0.3 -1
α̃ ∈ R α = exp(α̃)+0.5 0.4

Of these variables, ρ̃s,2, ρ̃s,3, σ̃ f and α̃ are global, and rest are per-
pixel. CYUV is the YUV to RGB conversion matrix. The initial
guess for ρd is the average color of the flash photo.

The variable ρ̃s encodes the specular albedo in YUV. The reason for
this is that we make the intensity of the specular spatially varying,
but force the chroma to be constant over our image. This is typi-
cal behavior for materials, and enforcing it improves the stability
of the optimization by reducing unnecessary degrees of freedom.
Similarly, for stability reasons we make the kurtosis parameter α

global. The additions of constants restrict the ranges of values that
the transformed parameters can take.

Data fit residual. The data fit residual Rfit(X) measures the dif-
ference between the input lumitexel values Z(i, j,s, t), and their
rendered predictions given the current parameters X. It is evaluated
independently at each combination of pixel (s, t) and half-vector
(i, j), and the residuals are summed.

Let Q(x,g; i, j) be the function that renders a pixel at half-vector (i, j)
with local BRDF parameters x and global parameters g, according
to the model in Section 4.3. The data fit residual for the component
(i, j,s, t) of the lumitexel array is

150
n

H0.1

{
clamp[Q(T (x(s,t),g); i, j)]−Z(i, j,s, t)

}
, (2)

where T (x,g) performs the domain mappings described above,
clamp(a) saturates the pixel value at 1, and Hγ (a) =

2γ2
(√

1+ a2

γ2 −1
)

is pseudo-Huber loss function, which smoothly
approximates the robust `1-norm. The leading multiplier is a weight-
ing, where n is the number of half-vector directions in the data. The
residual is computed separately for each color channel.

Priors We use three types of priors: pointwise priors that specify
the desired ranges for individual variables, smoothness priors that en-
courage spatially continuous solutions, and an integrability prior that
encourages the normal map to be consistent. The full prior residual
is a weighted sum of these residuals: respectively, ‖Rpriors(X)‖2 :=
10−4‖Rp(X)‖2+0.5‖Rs(X)‖2+25‖Ri(X)]‖2. All of the priors op-
erate on the raw parameter values, without the domain mappings
described above.

The pointwise prior ‖Rp(X)‖2 is a sum of separate residuals for
each local variable of each pixel. Let ρ̃d , ρ̃s,1,s and ñ be the current
parameters at pixel (s, t). The residual is then computed as 4‖ρ̃d‖2 +
16‖ρ̃s,1 +6‖2 +0.25‖s1 +6‖2 +0.25‖s2 +6‖2 +0.25‖s3‖2 +‖ñ‖2.
The main purpose of these priors is to discourage gross outliers, and
to favor the use of diffuse component for wide lobes.

The smoothness prior ‖Rs(X)‖2 is computed by considering each
spatially varying variable as a separate image and evaluating its
(unnormalized) finite differences in both x- and y-direction. The
difference maps are weighted by a variable-wise weighting, after
which we compute the Huber loss as above. We use the weight 0.2
for ρ̃d and 0.1 for the other variables. All difference residuals at
each point are summed together. The Huber norm penalizes spatial
variations of these variables in a manner similar to the `1 norm:
smoothness is generally preferred, but occassional abrupt jumps are
allowed.

Finally, as consistent normal maps have zero curl, the integrabil-
ity prior ‖Ri(X)‖2 is computed by evaluating the square norm of
the finite difference curl of the normal vector field: ‖Ri(X)‖2 =
‖∇yñx−∇xñy‖2, where ñx and ñy are suitably vectorized images of
the normal map components.

Construction and differentiation of residuals. Aside from the
residual function R, the Levenberg-Marquardt algorithm requires
that we supply its Jacobian matrix of partial derivatives against all
the optimization variables. This matrix is very large but sparse, as
all residuals only depend on a few variables. In practice we form the
residual vector and the Jacobian by hierarchically applying simple
operations on the input variables in bulk, while simultaneously keep-
ing track of the partial derivatives using the chain rule. We compute
analytic derivatives for all operations except for the rendering func-
tion, which we differentiate by finite differences. For L-M, we use
MATLAB’s lsqnonlin without Jacobian-based diagonal scaling,
with initial trust region size parameter of 1.
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