
Capturing Time-of-Flight Data with Confidence
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Abstract

Time-of-Flight cameras provide high-frame-rate depth
measurements within a limited range of distances. These
readings can be extremely noisy and display unique errors,
for instance, where scenes contain depth discontinuities or
materials with low infrared reflectivity. Previous works
have treated the amplitude of each Time-of-Flight sample as
a measure of confidence. In this paper, we demonstrate the
shortcomings of this common lone heuristic, and propose
an improved per-pixel confidence measure using a Random
Forest regressor trained with real-world data. Using an
industrial laser scanner for ground truth acquisition, we
evaluate our technique on data from two different Time-of-
Flight cameras1. We argue that an improved confidence
measure leads to superior reconstructions in subsequent
steps of traditional scan processing pipelines. At the same
time, data with confidence reduces the need for point cloud
smoothing and median filtering.

1. Introduction
Time-of-Flight (ToF) cameras have been successfully

used for a variety of applications such as Simultaneous
Localisation and Mapping (SLAM) [22, 25], 3D recon-
struction of static scenes [10, 34], and object tracking and
scene analysis [27, 33]. In contrast to stereo vision and
triangulation-based scanners, the ToF camera operates from
a single viewpoint and does not rely on matching of cor-
responding features, which greatly increases its robustness
in the presence of traditionally difficult scene materials and
internal occlusions. Compared to ToF laser scanners, ToF
cameras deliver a lower-resolution 2D depth image at much
higher framerates and at competitive costs of deployment.
With costs expected to dramatically decrease in the near fu-
ture, ToF cameras are likely to become a commodity item.

Despite the advantages of this new technology, it suffers
from problems such as low signal-to-noise ratio, multiple
light reflections and scattering. All these affect the recorded

1For code, data, further results and other supplementary material please
see http://visual.cs.ucl.ac.uk/pubs/tofconfidence/
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Figure 1. Flying pixels. (a) Color-coded ToF depth map (red indi-
cates close geometry, blue indicates distant geometry). Erroneous
depth readings are caused by materials with unsuitable reflectivity
and large depth discontinuities (see bottom ellipse). These pixels
collect modulated light from both the foreground and the back-
ground and give a resulting distance which is somewhere between
the two. The top ellipse shows pixels flying towards the camera,
but this is a different phenomenon, caused by highly specular re-
flections from the top of the monitor. (b) intensity and (c) ampli-
tude images.

depth values and hence produce erroneous 3D points, whose
reliability depends on various scene parameters. Previous
works [21, 34] rely on the amplitude values (Fig. 1(c)) as an
indicator of confidence for point removal and filtering. In
agreement with Kolb et al. [16], our experiments reveal that
simply thresholding low-amplitude values is insufficient to
remove inaccurate pixels—valid points could be lost before
flying pixels and other anomalies as depicted in Fig. 1(a) are
removed.

We observe that basing a confidence measure on the im-
age amplitude alone disregards valuable additional informa-
tion. Explicitly incorporating additional cues, such as depth
and local orientation, however, may be challenging, due to
the difficulty of developing a descriptive error model that
covers their interplay. Instead, we propose to use Random
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Forests [5] to train a regressor to infer the reliability of a
depth sample from these input quantities. Random Forests
have proven useful as a supervised learning technique that
performs feature selection, and are even being used for real-
time 3D classification tasks [32].

Analogously to Mac Aodha et al. [19] and Carreira and
Sminchisescu [6], we obtain a per-point confidence assign-
ment, which could be exploited in other data filtering and
3D reconstruction systems [23].

We qualitatively and quantitatively evaluate the robust-
ness of our approach with two different ToF cameras, com-
paring it against baseline approaches of depth sample filter-
ing. We show that our machine-learning-based approach
outperforms previous methods, leading to a confidence
measure of high discriminative power.

2. Background
Optical range cameras [17, 30] measure the time of flight

of near-infrared (NIR) light emitted by the camera’s active
illumination and reflected back from the scene. The illu-
mination is modulated either by a sinusoidal or pseudo-
noise signal, depending on the camera model. The phase
shift of the received demodulated signals conveys the time
between emission and detection, indicating how far the
light has traveled and thus indirectly measuring the depth
of the scene. Due to the periodicity in the modulation
signal, these devices have a limited working range, usu-
ally only up to 7.5 m. Distances beyond this point are
recorded modulo of the maximum depth, known as wrap-
around error [24]. ToF cameras output images of dis-
tance and grayscale intensity (Fig. 1(b)). With knowledge
of the camera intrinsics, the distance readings can be con-
verted to a 3D point cloud (Fig. 1(a)). Some ToF sensors
also record an amplitude value at each pixel, which indi-
cates the amount of modulated light reaching the sensor
and disregards external illumination and incoherent stray
light (Fig. 1(c)). Similarly to intensity, this amplitude is
influenced by scene depth, surface materials and orienta-
tion, and lens vignetting [15, 22]. Low amplitude suggests
that a pixel has not received enough light to produce an
accurate depth measurement, although saturation of high-
intensity responses may also lead to invalid readings, de-
spite a high amplitude [13]. If the amplitude values are not
provided by the camera, intensity images have been used
instead [10, 21].

2.1. Depth Corrections and Calibration

When dealing with measurement devices, it is impor-
tant to properly understand the causes of potential errors
and calibrate for them. Given the optical properties of ToF
cameras, a standard intrinsic camera calibration sufficiently
describes the focal length, principal focal point and lens dis-
tortion [14, 18]. To further improve the unreliable depth

readings caused by systematic errors, Lindner and Kolb [18]
estimate a higher-order polynomial function which takes
into account global as well as per-pixel inaccuracies. As-
suming such initial depth calibration, Beder et al. [2] fur-
ther estimate the camera’s 3D pose using a single image
of a checkerboard. Unfortunately, as Boehm and Pattin-
son [3] recently showed, even a careful calibration is not
sufficient for real-life scenarios. Despite calibration, they
report errors in pose estimates that are an order of magni-
tude larger than the error modeled by the calibration. These
errors are scene-dependent and cannot be overcome by cali-
bration [3, 20]. Fuchs and May [12] and May et al. [21, 22],
on the other hand, find known camera positions using a
robotic arm to achieve high-precision results for both the
initial calibration and final 3D reconstruction, using vari-
ations of the Iterative Closest Point (ICP) [26] algorithm.
They demonstrate an overall error accumulation which has
to be globally relaxed when closing a loop.

In contrast, Schiller et al. [28] use up to 80 images from
each camera from their rigidly mounted multi-recording
setup, improving on previous results of single ToF cam-
era calibration methods. Similarly, Kim et al. [15] combine
several video and ToF cameras, while taking into account
the scene-dependent effects. They introduce ratios of nor-
malized amplitude values, which are median and Gaussian
filtered. Random noise, however, is assumed to be negligi-
ble.

2.2. 3D Reconstruction and Filtering

Feulner et al. [10] register consecutive ToF frames by
detecting binary edge presence in the intensity images and
aligning their corresponding 3D coordinates by maximiz-
ing the uncentered correlation coefficient. In contrast,
Fuchs and May [12] filter points at depth discontinuities,
as these exhibit the largest distance error. Swadzba et al.
[34] present a full acquisition pipeline that relies on several
preprocessing steps to improve depth accuracy: a varying
distance-adaptive median filter is applied to the intensity,
amplitude, and depth images, and points with low ampli-
tude are thresholded. Subsequently, a custom-made neigh-
borhood consistency filter detects and removes flying pixels
at edge locations in the distance image. Nevertheless, all of
the above produce only binary classification of erroneous
depth readings.

Fusing high resolution color images with ToF data pro-
vides enhanced range maps, as shown by Yang et al. [36].
In their work, a bilateral filter aggregates probabilities of
depth estimates based on color affinity, iteratively reducing
the level of up-sampled blur that occurs due to interpola-
tion in discontinuous areas. Our main inspiration, however,
comes from the work of Schuon et al. [29]. Their Lidar-
Boost method combines several noisy ToF frames into a sin-
gle, high-resolution depth image. By assigning zero confi-
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Figure 2. Pipeline for computing a confidence value for each pixel
in a ToF depth-scan. The offline supervised training stage builds
a Random Forest for regression by correlating extracted features
(see §3.4) with depth errors. These errors were computed by com-
paring the raw depths from the ToF camera against the “ideal”
geometry of the training scene.

dence to low amplitude pixels (i.e. thresholding), the results
are further improved. This technique was later built upon
by Cui et al. [8] to achieve state-of-the-art reconstruction
results. In their work, one point cloud is randomly selected
as a reference model, and remaining frames from the se-
quence are aligned with it. At each point, a multi-variate
Gaussian with fixed uniform covariance is centered, and the
maximum likelihood estimate is found through Expectation
Maximization (EM). Unfortunately, all sources of system-
atic error (such as surface orientation and reflectance, cam-
era’s integration time, or depth) are neglected, and the only
assumption is an increasing bias growing from the image
center.

In contrast, our approach derives confidence measures
across both systematic and random errors. As a single-
frame method operating directly on the camera output, our
method is further amenable to combination with many of
the approaches mentioned above, providing an improved
prior for depth sample confidences.

3. Learning ToF Confidence

Each model of ToF camera has its own set of charac-
teristics and inaccuracies. To make meaningful predictions
about the confidence of a camera’s output, we propose that
these characteristics can be learned by comparing data from
the camera with ground truth distance. The objective is to
assign a confidence value in the range [0, 1] to each point
produced by a ToF camera, where 1 signifies a distance
reading believed to be completely accurate while 0 signifies
a reading that should be ignored. This assignment of confi-

(a) room scene (b) stairs scene

Figure 3. Intensity images of training scenes from the laser scan-
ner.

dence is performed with a trained Random Forest operating
in regression mode. Regression is preferable here to clas-
sification because confidence is continuous, and different
applications will stipulate their own expectations of accu-
racy. Other supervised learning systems such as SVMs [7]
could also be used. Random Forests were chosen because
they automatically perform feature selection and they re-
quire no cross-validation due to the use of out-of-bag es-
timates during training [5]. We acquire training data of
the form {(xi, yi)}Ni=1. Each feature vector xi is encoded
from a single point recorded by the ToF camera, and the
corresponding yi is the target value, or confidence. These
confidences are computed from the difference between the
ToF’s reported distance and the ground truth distance for
each reading. When the disparity between these two val-
ues is low, the correct label is close to 1, whereas for pixels
where the camera’s reported distance is significantly in er-
ror, the label value is close to 0. Once the Random Forest
has been trained, we can compute a prediction y∗ for an un-
seen x∗, allowing a confidence map to be created for each
new image (see Fig. 2).

3.1. Data Capture

To compute ground truth label values for each pixel, a
true distance image D̂ must be generated. This image is
the same resolution as the output from the ToF camera, and
each pixel contains the true distance, i.e. the reading that the
ToF would have produced were it completely accurate. The
viewpoint of this perfect depth image must match the actual
location of the ToF camera to be meaningful. In practice,
we obtained ground truth by fixing a ToF camera close to
a high-end, Time-of-Flight laser scanner, so that the view
frustra overlap as much as possible (see Fig. 4). In princi-
ple, its measurements may be subject to similar errors as the
ToF camera. The scanner’s precision and resolution are sig-
nificantly higher than the camera’s [3, 8, 11], which makes
it sufficient for ground-truth in our case.
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3.2. Calibration

The ToF camera intrinsics were computed using images
of a checkerboard and the Bouguet toolbox [4]. The inten-
sity images I have properties similar to a standard grayscale
camera, so no modifications to the calibration code are re-
quired.

The intrinsic parameters included focal lengths in x and
y, the principal point, and a 5-parameter lens distortion
model. The extrinsics of the scanner relative to the ToF
camera were computed by placing targets in the scene. Pa-
per photogrammetry targets (see Fig. 3) with printed cir-
cles were attached to available flat surfaces throughout the
scene, spanning the range of depths and spread across the
joint field of view of both systems. The 2D location of el-
lipse centers was determined with sub-pixel accuracy in I ,
and in an equivalent intensity image from the laser scan-
ner. The 2D target centers in I and the 3D locations of the
target centers determined by the laser scanner were used to
compute an estimate of the extrinsics which minimized the
squared reprojection error.

Due to the low resolution of current ToF cameras, the
extrinsics calibration based on target detection may only be
accurate enough to initialise registration. Experiments with
targets at the back and sides of the capture volume showed
that background geometry reprojected accurately but fore-
ground objects were offset sideways in D̂ compared to the
ToF recorded D. Using unweighted rigid ICP, the initial
registration was refined by aligning the laser point cloud
with the ToF point cloud. A streamlined one-shot registra-
tion technique could be useful if large quantities of training
data were acquired in the future, possibly leading to even
better confidence estimates.

3.3. Computing Ground Truth Depth

After calibration, a projection of the laser geometry into
the ToF camera is computed for comparison against the
ToF’s own depth image. The laser scan has much higher res-
olution than the ToF, (a typical scan was 1251× 1055 com-
pared to 200× 200 for the ToF, while covering roughly the
same field of view), but still consists of points not surfaces.
As a result, many laser scanned points at various depths fall
within the point spread function of a ToF pixel, as shown in
Fig. 4. One could choose the closest, i.e. frontmost of the
points for D̂i,j , but flying pixels occasionally occur in laser
data as well and could provide erroneous depths. Neither
the minimum nor the mean of these points’ depths would
be appropriate (Fig. 4). All laser points which project into
the sensor region of pixel (i, j) are used to compute D̂i,j .
We fit a Mixture of 3 Gaussians using EM to the depth val-
ues of these points. D̂i,j is set to the minimum of the means
of the fitted Gaussians. Finally, due to parallax and occlu-
sion, the ToF camera may be sampling parts of the surface
geometry that were unseen by the laser scanner. By placing

A

B

C

D

E

Laser ToF

A B C

Figure 4. Overhead view of a scene acquired by the laser scanner
(red) and ToF camera (blue). We project the laser geometry into
the ToF camera (green) without considering occlusions. The inset
depth histogram shows how laser points from distinct locations can
project into a single ToF pixel, but only points from A are valid.
The area visible to the ToF between D and E is not covered by the
laser scanner and so no training data is acquired here.

the ToF camera very close to the laser scanner, we minimize
the areas of the ToF image for which no ground truth exists.

Each depth value in D̂ must be converted to a training la-
bel y ∈ [0, 1]. Intuitively, the difference between D̂ and the
ToF’s D is normalized by D̂ to find the relative depth er-
ror. Relative depth error is used because we assume that it is
unrealistic to expect ToF cameras to have uniform absolute
accuracy at all depths [3, 11, 15]. The relative depth error
is passed through the arctan sigmoidal function, reflected,
and rescaled so that a relative distance error of 0 becomes
1, and a hypothetical infinite distance error becomes 0. The
final confidence label y is

yij = 1− 2

π
arctan

(
α
abs(D̂i,j −Di,j)

D̂i,j

)
, (1)

where the parameter α controls how quickly y tends to 0 as
relative distance error tends to infinity.

3.4. Feature Extraction

A feature vector xi,j is computed for each pixel (i, j) in
the ToF image. To allow the Random Forest to generalize
the properties of pixels with high and low confidence, three
types of data are used to construct the feature vector. Note
that Random Forests calculate the importance of each entry
in the feature vector as part of the training process. This
feature selection property makes it possible to use a large
number of features that may be correlated with confidence,
and have the training process automatically determine
which ones were in fact useful. The categories of features
are: local features from a single point (i, j), spatial features
calculated from a neighbourhood surrounding (i, j), and
global features calculated from the entire frame.
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Local Features. The primary feature values at each ToF
pixel (i, j) consist of the intensity Ii,j , signal amplitude
Ai,j if available, and distance Di,j . These elements are
included to allow learning of different physical phenomena,
e.g. pixels not receiving enough light to compute an accu-
rate distance where the scene has low reflectivity in NIR
light spectrum, or receiving too much light so that pixels
saturate. Distance is included because, in accordance with
the inverse square law, surfaces a larger distance away are
likely to have a higher error magnitude. The radial distance
of each pixel is also included in the feature vector to allow
the possibility of learning different error characteristics
near to the edge of an image.

Spatial Features. Filters are used to incorporate local
spatial information about the scene. Neglecting perspec-
tive projection of the camera, we find approximations to the
normal angle in x and y. A Laplacian filter is convolved
with both the distance and intensity images. This filter is
commonly used for edge detection, so it is included in the
feature vector to allow the forest to learn the relationship
between error and depth discontinuities. Our initial obser-
vations indicated that flying pixels at depth discontinuities
were among the most noticeable artifacts in ToF data, but
that not all sharp depth changes were incorrect. As well as
the 3×3 Laplacian kernel, 5×5 and 7×7 versions are used
to incorporate information at different scales.

Gabor filters [9] describe a family of kernels, which
differ from the Laplacian in that they can be set to a
particular orientation. Whereas a large response from the
Laplacian indicates the presence of an edge, Gabor filters
at different orientations θ produce a response which can
determine the direction of the edge. Filters at 0◦, 45◦, 90◦

and 135◦ were computed over the image. Due to the more
complex form of the Gabor wavelet, a 13 × 13 filter was
used over the whole image.

Global Features. Inspired by Kim et al. [15] we allow
the forest to learn the relationship between some feature at a
particular point and the distribution of feature values across
the whole image. For every feature listed above except ra-
dial distance, the minimum, maximum, mean, and median
values across the whole frame were included. Because of
this, each feature already mentioned contributes 5 elements
to the feature vector, giving a final dimensionality of 91 (18
features× 5, plus radial distortion). Our final feature vector
takes advantage of many of the cues used deterministically
in previous works to probabilistically assess the quality of
ToF data.

4. Experiments
To evaluate the confidence assignment method, scenes

were captured with a PMD CamCube 2.0 ToF camera. This

camera has a resolution of 200 × 200 px, and provides
both amplitude and intensity images. One scene of a stair-
case (stairs Fig. 3(b)) and one scene of an office (room
Fig. 3(a)) were captured, both with a number of clutter items
placed at different depths in the scene. The objects were
chosen to include a wide variety of surface reflectance prop-
erties, including plastic, wood, textiles, polystyrene, and
brushed metal. The object placement was intended to create
multiple depth discontinuities of varying magnitudes, and
to span a variety of different errors on which to train the
model. For these scenes, a laser scanner was used to ac-
quire ground truth, so the scenes could be used for training
and quantitative experiments. Additional scenes were cap-
tured without ground truth (see supplementary material for
full details) to be used for qualitative evaluation, so that our
algorithm was tested on a total of 4 different scenes.

4.1. Quantitative Results

To generate quantitative results, a forest was trained on
the stairs scene and tested on the room scene. 125 trees
were generated with a maximum depth of 25, forest accu-
racy of 0.0001 and the labels were generated with α = 7.

It is standard practice when dealing with noisy point
cloud data to delete points which are deemed to have the
highest error, so that further processing must cope only with
more reliable data. Previous work such as Schuon et al.
[29] used amplitude as a per-point quality indicator, delet-
ing points with low values. The probabilistic confidence
output from our algorithm can be thresholded in the same
way to produce an alternative binary classifier for points.

During the review process a “geometric” baseline algo-
rithm was suggested, which classified each point by com-
puting the distance to the closest other point in each scan,
so a small distance would indicate a reliable point. We in-
clude comparisons of our method to both this method and
the amplitude baseline.

To quantify the relative improvement of our method over
simply using the amplitude or examining geometric proper-
ties of the data, we present ROC curves on room in Fig. 5.
After discarding points for which no laser geometry or fil-
ter output was available, 31k points were left for classifica-
tion. The ground truth in this binary classification task was
computed by thresholding relative distance error from (1).
Fig. 5(a) shows the classifiers’ accuracy at correctly iden-
tifying which points are within 4% of the true depth, and
Fig. 5(b) shows the same for 25%. ROC curves are gener-
ated by sweeping each metric from minimum to maximum
value, where the metrics are amplitude, confidence poste-
rior probability, and inverse distance to sample point.

The average ROC Area Under Curve (AUC) calculated
across the error tolerance range {1 . . . 25}% (see Table 1)
shows our technique outperforming both the amplitude and
geometric baselines on average, and in fact in each of these
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Threshold
(relative error, %)

Amp
AUC

Geom
AUC

Conf
AUC

4 0.639 0.599 0.729
25 0.685 0.722 0.757

{1 . . . 25}
(average) 0.654 0.661 0.736

Table 1. AUC of ROC curves for Amplitude (Amp), Geometric
(Geom) and Confidence (Conf) algorithms.
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Figure 5. ROC curves. Comparison of our method against ampli-
tude and geometric filtering on: (a) less than 4% error with 21, 290
actual positives and 9, 931 actual negatives, (b) less than 25% er-
ror with 29, 102 actual positives and 2, 119 actual positives. 4%
error corresponds to an error margin of 16cm on a surface 4 meters
away.

25 cases, the AUC for confidence thresholding is largest.
Further graphs for these settings can be found in the sup-
plementary material. Our technique no longer has a clear
advantage over the baselines for tolerances above 25%, but
very few bad points remain. Over 93% of the data already
falls within this tolerance.

4.2. Qualitative Results

It is informative to examine which points are deleted
by each ToF assessment algorithm. We compare ampli-
tude thresholding, the thresholding technique of Swadzba et
al. [34], and confidence thresholding, referred to as meth-
ods A, B, and C (Fig. 6). Method B performs amplitude
thresholding after smoothing the amplitude image, and ad-
ditionally discards points based on edge detection. It is un-
clear how to vary both the amplitude and edge parameters
to draw a fair ROC. As our technique is only being used to
threshold points and not actually change their positions, we
omit their distance smoothing step.

Using the recommended parameters, method B removes
27% of the 35, 344 points in room. Thresholds for meth-
ods A and C were adjusted to remove the same number
of points for direct comparison, although we would use a
lower threshold on method C to improve results. As the
Fig. 6 insets show, methods A and B are not as comprehen-
sive in their removal of flying pixels at depth discontinuities.
Please see the supplementary material to better inspect the

3D data.

4.3. Feature Importance
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Figure 7. The 25 most important Random Forest features after
training on stairs and room data.

The Random Forest training process calculates the rele-
vance of each entry of the feature vector, which allows us to
analyze which features carry the most information as shown
in Fig. 7. A full graph is included in the supplementary ma-
terial. Distance is the most important factor, followed by in-
tensity, the Laplacian of the distance image at two different
scales, and finally the amplitude. For this analysis, the for-
est has been trained on both stairs and room, which al-
lows the variation in the global features to contribute to the
confidence model. It is shown that the global features based
on amplitude contain the most discriminative content. Note
that when training on only one scene, all the global features
are constant across the whole training set and so have the
same level of importance.

4.4. Application to Different Model ToF

To evaluate the effectiveness of our technique on a differ-
ent model of ToF camera, we also collected training data for
the Mesa SwissRanger SR-3100. This camera does not pro-
vide an amplitude image, only intensity and distance, so the
feature vector was correspondingly smaller. Fig. 8 shows a
photo of a test scene which included large depth disconti-
nuities and many flying pixels. The thresholded point cloud
once more shows successful elimination of flying pixels and
other forms of outliers.

5. Discussion and Future Work
We have presented a method to assign per-point confi-

dences to ToF scans using a supervised learning approach.
Both qualitative and quantitative results show marked im-
provement on contemporary methods for the removal of in-
accurate points. The algorithm is particularly good at de-
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(a) Amplitude (method A) (b) Swadzba et al. [34] (method B) (c) Confidence (method C)

Figure 6. Points removed by a method are shown in red. The green box in (c) shows an artifact of our method, see §5.

(a) (b) (c)

Figure 8. Cluttered desk environment captured by Mesa SwissRanger 3100. (a) photo of the scene, (b) and (c) are respective frontal and
side views of the obtained point cloud where points with confidence below 0.6 are shown in red.

tecting flying pixels. Demonstrations using different cam-
era models suggest that our confidence assignment method
is hardware agnostic. We anticipate methods such as
Schuon et al. [29] could be improved with our confidences.
ICP is a common algorithm for merging point clouds, and
could be augmented by applying confidence weighting to
each matching pair of points. Our confidence measure could
potentially be adapated to support the semantic cues used
for SfM in Bao and Savarese [1]. Similarly, the initial mesh
models reconstructed using multi-view stereo and then re-
fined based on shading in Wu et al. [35] could instead start
from our ToF data, and be more malleable where the confi-
dence was low.

As with all supervised learning methods, for a high level
of performance, a representative training set is required.
Despite the limited size and variety in our training set, the
technique has proven successful on unseen test data. Some
artifacts remain, such as the incorrectly deleted points in
the green square in Fig. 6(c). We surmise that adding data
from a wider range of scenes, including bright nearby ob-
jects, would further improve generalisation ability and per-
formance. The registration problems detailed in §3.2 could

be solved either with higher-resolution ToF cameras or a
better distribution of targets within the scene. Applying a
non-linear calibration for the systematic depth [3, 8, 11]
could improve the raw distance readings which would then
be used to compute feature vectors.

An area we have not yet explored is the possibility of
using a variant of the standard Random Forest or indeed
a different Machine Learning algorithm altogether. Recent
developments such as Adaptive Random Forests [31] have
the potential to increase the speed of the confidence assign-
ment, which is currently around 5 seconds for a 200 × 200
frame.
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