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In this article, we analyze the fracture patterns observed in wall paintings excavated at Akrotiri, a Bronze Age Aegean set-
tlement destroyed by a volcano on the Greek island of Thera around 1630 BC. We use interactive programs to trace detailed
fragment boundaries in images of manually reconstructed wall paintings. Then, we use geometric analysis algorithms to study
the shapes and contacts of those fragment boundaries, producing statistical distributions of lengths, angles, areas, and ad-
jacencies found in assembled paintings. The result is a statistical model that suggests a hierarchical fracture pattern where
fragments break into two pieces recursively along cracks nearly orthogonal to previous ones. This model is tested by comparing
it with simulation results of a hierarchical fracture process. The model could be useful for predicting fracture patterns of other
wall paintings and/or for guiding future computer-assisted reconstruction algorithms.
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1. INTRODUCTION

Reconstruction of fractured ancient artifacts such as frescoes, pots, statues, and tablets is important
because it helps archaeologists make inferences about past civilizations and cultures. Unfortunately,
reconstruction is usually a painstakingly labor-intensive job which may take several months or even
years to complete by hand if the number of fragments is very large.

To overcome this problem, several computer scientists have worked on automated reconstruction
systems that acquire photographs and/or close-range 3D laser scans of fragments and then use com-
puter algorithms to assemble them [Willis and Cooper 2008]. Example projects of this type include
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Stitch [Cooper et al. 2001] and Forma Urbis Romae [Koller and Levoy 2006]. They typically use com-
binatorial algorithms to search for the arrangement of fragments that optimizes a scoring function,
usually designed heuristically based on the compatibility of properties in adjacent fragments. While
they have demonstrated some success, they still are not able to assemble complete artifacts from many
fragments automatically [Willis and Cooper 2008].

In this article, we utilize analysis of previously reconstructed wall paintings to learn the statistics of
correct fragment arrangements. Our goal is to gather data that can be used to characterize the arrange-
ments of fragments typically found in reconstructions so that more principled scoring functions can be
developed and generative models of crack formation can be evaluated. We use interactive programs
to trace detailed fragment boundaries in images of manually reconstructed wall paintings containing
approximately 4,000 fragments. Then, we use geometric analysis algorithms to study the shapes and
contacts of those fragment boundaries, producing statistical distributions of lengths, angles, areas, and
adjacencies found in assembled arrangements of fragments.

These statistics reveal information that could guide future scoring functions and/or generative mod-
els. Loosely speaking, we find that (1) fragments tend to be nearly convex polygons, (2) the distribution
of fragment areas roughly follows an exponential distribution, (3) cracks between fragments tend to be
nearly straight, and (4) cracks most often meet at right angles.

These observations support the hypothesis that the cracks formed as the result of a hierarchical
process where fragments were broken recursively into two subfragments along nearly straight cracks
are nearly orthogonal to previous cracks. We confirm this hypothesis by performing simulations of
hierarchical fracture processes and then comparing their statistics with the ones observed from the
actual fresco. Investigating a model of a fracture process with statistical analysis of continuous-valued
properties of reconstructed wall paintings is the most novel contribution of our work.

2. RELATED WORK

There has been a long history of work on computer-aided reconstruction of fractured objects in archae-
ology [Kleber et al. 2009; Willis and Cooper 2008]. Most previous work has focused on
finding pairwise matches between adjacent fragments by aligning patterns in their surface colors
[Papaodysseus et al. 2008], polygonal boundaries [Papaodysseus et al. 2002; Leitão and Stolfi 2002],
normal maps [Toler-Franklin et al. 2010], and/or fractured edges [Brown et al. 2008; Huang et al. 2006;
Papaioannou and Karabassi 2003]. These methods have been successful in cases where the fragments
have highly distinctive features [Huang et al. 2006], the reconstructed objects are surfaces of revo-
lution [Karasik and Smilansky 2008]), and/or when domain-specific features can be used to identify
potential matches [Koller and Levoy 2006]. However, they have not been able to automatically recon-
struct archaeological artifacts with a multitude of flat, partially eroded fragments [Willis and Cooper
2008].

There are two significant problems. First, it is intractable to exhaustively search the space of po-
tential fragment alignments [Demaine and Demaine 2007]. Second, it is difficult to devise a “scoring
function” that effectively discriminates correct alignments from incorrect ones. As a result, most prior
reconstruction algorithms have employed heuristics to prune the search space based on expected rela-
tionships between adjacent fragments. For example, in the domain of jigsaw puzzle solving [Freeman
and Garder 1964], the boundary of each piece can be partitioned robustly into discrete features rep-
resenting “tabs,” “indents,” “corners,” and “border edges,” and only certain types of arrangements are
possible when joining those features (e.g., corners abut with corners, tabs align with indents, border
edges continue across several pieces, etc.). Thus, it is possible to prune the space of potential matches
significantly, and puzzles with up to 200 pieces can be solved [Goldberg et al. 2004]. Our goal is to
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 3, Article 10, Publication date: October 2012.
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generalize these methods to the domain of wall painting reconstruction where relationships between
adjacent fragments are not so clear-cut and thus must be described statistically.

Statistical analysis of fracture patterns has a long history in mechanics [Griffith 1921], geology
[Cloos 1955], forensics [McDanels et al. 2006], paleontology [Bhandarkar et al. 2009], and several other
fields. In 1962, Lachenbruch [1962] classified fracture patterns as either orthogonal (e.g., hierarchical)
or nonorthogonal (e.g., hexagonal). He observed that junctions are often at right angles in orthogonal
structures. In 1968, Rats [1968] proposed a “rule of identical areas” suggesting that stone blocks break
into nearly equally-sized pieces until a minimum block size is reached and observed that orthogonal
fracture patterns have predominantly four-sided fragments. Mulheran [1993] observed that crack net-
works in thin films are statistically self-similar, suggesting that fragment areas have an exponential
distribution. Other specialists have studied hierarchical fracture patterns in ceramics [Kornetta et al.
1998], chalk [Cawsey 1977], clay [Tang and Shi 2008], polymer coatings [Handge 2002], mud [Bohn
et al. 2005], and other materials.

Within archaeology, there have been a few projects aimed at fracture pattern analysis. Leitão and
Stolfi [2005] studied the information content in fracture contours with the goal of understanding
whether reconstruction of artifacts with many fragments is theoretically possible. McBride and Kimia
[2003] studied types of edges and joints in fractured frescoes, observing that the vast majority of junc-
tions appear where three fragments join in a “T” junction (70–89%) and that discernable corners
in fragment contours usually align in pairwise fragment matches (77–78% have at least one corner
aligned). The authors utilized these observations in a reconstruction algorithm that considered only
pairwise matches that align corners, demonstrating results for test datasets with 13–25 fragments.
While this work takes a significant first step in the direction of our article, it provides only very coarse
statistics (i.e., counts of the number of junctions falling into certain predefined cases). It does not
study traced boundaries of fragments and/or gather continuous-valued descriptions of how fragments
are arranged (e.g., areas, lengths, angles, etc.), and it does not advocate a specific model of the frac-
ture process and/or use simulations to compare fracture patterns, and thus the statistical analysis and
range of applications are not as general as ours.

This article provides results for simulated and real data, while additional details about analyzing
fracture patterns are shown in Shin et al. [2010]. The main difference is the addition of a simulation
study (Section 5). This article is also related to Funkhouser et al. [2011], which leverages the analysis
herein to derive new features for matching fragment contours.

3. METHODS

The main contribution of our work is the development a statistical model for the crack pattern of
a fractured wall painting. Starting from a high-resolution image of a manually reconstructed fresco,
we use an interactive program of our own design to trace contours around every fragment in the
image and then gather statistical distributions of spatial properties that characterize the observed
arrangement of fragments. These statistics form a data-driven probabilistic model for the fracture
pattern. We confirm this model using simulations produced by the Berkeley Surface Cracking Toolkit
[Iben and O’Brien 2009].

Our test case is a wall painting called “Crocus Gatherer and Potnia” (top left of Figure 1), which
was recovered from the Xeste 3 building at the archaeological site of Akrotiri, Thera. This was a Late
Bronze Age settlement destroyed circa 1630 B.C. by a volcanic eruption, preceded by strong earth-
quakes. The settlement, well preserved by volcanic ash, has been the site of an excavation since 1967,
and dozens of wall paintings have been recovered and are being reassembled [Doumas 1992].

The wall paintings were constructed on an interior wall that was covered first by mud and straw,
then by a layer of lime plaster roughly 1 cm thick. The designs, which include both buon fresco and
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Fig. 1. High-resolution color image of a reconstructed Theran wall painting called Crocus Gatherer and Potnia (republished
with permission from Figs 122–128 of “The Wall Paintings of Thera” [Doumas 1992]). The painting (3.22 × 2.30 meters) was
photographed at 80 pixels per centimeter by George Papandreou [Papandreou 2009] (top left), and then every fragment was
outlined with a contour tracing program to yield a polygonal mesh representation (bottom left) with 4,147 fragments, including
156 gaps, 10,994 edges (blue lines), and 4,921 junctions. A zoomed view of the polygonal mesh is shown on the right. (Copyright:
Akortiri Excavations, Thera).

fresco secco areas, were applied to a final thin layer of fine plaster [Doumas 1992]. The wall paintings
are excavated in thousands of small fragments, cleaned and conserved, then manually reassembled by
skilled curators over the course of many years.

The Potnia (Goddess of Nature of the Bronze Age Aegean societies) was found scattered in hundreds
of fragments in the interior of Xeste 3 (Room 3a), and archaeological study has shown that it decorated
the north wall of this space on the second floor of the building [Vlachopoulos 2007]. Both the north wall
of Room 3a and the wall painting collapsed, and the restoration of the composition (comprising another
Crocus Gatherer proceeding from the right and an oblong window between her and the Potnia) took
more than 10 years. In this article, we focus on the left part where a young girl empties her basket with
crocus flowers in a pannier, from which a blue monkey takes a posy of dried stamens and offers them
to the seated Potnia. This part measures 3.2m in width and 2.3m in height, and we work with a high-
resolution image produced by stitching together a large number of digital photographs [Papandreou
2009].

Our article describes a processing pipeline to analyze the fracture patterns in the “potnia” and other
wall paintings. The following two sections describe the main steps of this processing pipeline: contour
tracing and contour analysis. The result of this analysis is a statistical model of the fracture process
(Section 4). This model is confirmed using a simulation in Section 5. Finally, Section 6 provides a
summary of our findings and topics for future work.
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 3, Article 10, Publication date: October 2012.
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3.1 Contour Tracing

Beginning with a high-resolution color image of a manually reconstructed fresco (top left of Figure 1),
our first goal is to trace the contour outlining the perimeter of every fragment (bottom left of Figure 1).
This goal is challenging because a single fresco may have thousands of fragments and the cracks
between those fragments may form a complex network of contours, requiring millions of points to
capture the paths of all cracks accurately.

Ideally, we could write a computer program that would extract fragment contours from a color image
automatically. However, cracks are difficult to detect robustly, especially in painted regions where crack
patterns are intermixed with color patterns [Bazin and Henry 2003]. As a result, it is difficult for a
computer to discover the topology and gross placement of contours completely automatically, as there
are many situations in which the global structure of the fracture pattern must be understood in order
to determine the correct placement and connectivity of junctions (a task that people are very good
at). Alternatively, we could ask a person to trace every contour with an interactive tracing program.
However, it would be tedious and error-prone for a person to trace the path of every crack accurately
(at pixel precision) since cracks typically have many slight changes in direction that would be difficult
to trace interactively (a task that computers are good at). So, we take a hybrid approach.

We have implemented a semi-automatic program to trace fragment boundary contours inspired by
the “intelligent scissoring” approach of Mortensen and Barrett [1995]. The user begins by clicking on a
junction or other point of interest. Then, as he or she moves the mouse away from the clicked “anchor”
point, the computer interactively displays the optimal computed path between the anchor and the
current cursor position. The user may click to place another anchor point, freezing the current curve,
or click on a previously placed curve or anchor, joining the curve to a newly created junction.

The optimal path minimizes an energy function designed to snap to cracks in the image. Because the
cracks appear darker than the surrounding plaster, we define the energy function E at each pixel to be
smaller when the pixel’s intensity is lower than its neighbors’. Specifically, we minimize the following
error function, which favors shorter paths along darker pixels:

E(p) = [
1 + I(p) − max

q∈N (p)
I(q)

]n
. (1)

The exponent n is used to determine the strength of snapping: lower values favor short paths, while
higher ones allow the path to deviate more from a straight line in order to follow cracks (we found
that n = 8 provides a reasonable trade-off). Since the error function grows monotonically along a path,
Dijkstra’s algorithm can be used to efficiently find optimal paths at interactive rates.

The bottom-left and rightmost images in Figure 1 show screenshots of the program after the contour
tracing process is complete. The tracing process for this result took approximately 20 hours of user
input. Note that while cracks are treated as infinitely thin lines, they are not. Due to erosion, chipping,
and deformation, gaps may be introduced between fragments. Therefore the accuracy of our results
depends on the resolution with which we click “anchor” points and trace contours. For example, what
looks like a four-or five-way junction in low resolution may turn out to be, in higher resolution, several
three-way junctions clustered together. For this reason, we use a high-resolution image (80 pixels per
cm) and try to achieve maximum resolution during contour tracing, resolving higher-order junctions
as much as possible.

The result is a polygonal mesh covering the image where each polygon represents a fragment or
gap (marked by the user), each edge represents a sequence of points along the boundary between
two fragments (shown in blue), and each vertex represents a junction at a position where multiple
edges/fragments meet. Since junctions and edges contain points shared between fragments, topological
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Fig. 2. Histograms of fragment properties.

adjacencies and geometric properties (e.g., angles, lengths, and areas) are easily computed from the
polygonal mesh.

3.2 Contour Analysis

Once we have a polygonal mesh output by the contour tracing program, we analyze its geometric and
topological properties with the goal of building a statistical model of its crack pattern. Specifically, we
investigate properties of fragments (adjacencies, area, convexity, and circularity), edges (lengths, an-
gles, straightness, and corner types), and junctions (adjacencies, angles, and corner types). We present
statistics gathered during our analysis in this section and discuss a possible model of fracture process
suggested by these observations in the next section.

Fragment Adjacency. Figure 2(a) shows a histogram of the number of fragments adjacent to each
fragment . Two fragments are adjacent to each other if they share one or more boundary points (i.e., if
they have a common edge). We only consider interior fragments (ones that are not adjacent to a gap).
We observe that most fragments are adjacent to 3–8 other fragments, and the mode is four. However,
there are a few small fragments surrounded by two fragments and a few large fragments adjacent to
more than ten.

Fragment Area. Figure 2(b) shows a histogram of fragment areas plotted on a log scale. The his-
togram is normalized to (0,1] . The observed distribution seems to roughly follow an exponential dis-
tribution with many small fragments and few large ones.

Fragment Convexity. Figure 2(c) shows a histogram of fragment convexity, computed as the area
of the fragment divided by the area of its convex hull. Representative examples for four different
convexity values are inset along the top of the histogram. This distribution indicates that the vast
majority of fragments are almost, but not perfectly, convex. We observe that deviations from perfect
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 3, Article 10, Publication date: October 2012.
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Fig. 3. Histograms of edge properties.

convexity are mainly due to small concavities that form along edges that are not completely straight
(rather than a few deep concavities amongst perfectly straight edges), as shown in the inset examples.

Fragment Circularity. Figure 2(d) shows a histogram of fragment circularity, computed as√
4 ∗ π ∗ area/perimeter). The circularity measure provides a value between zero (line segment) and

one (perfect circle) indicating how “round” the fragment is, as shown in examples inset across the
top of the figure. From the histogram, we observe that fragments rarely have extremely elongated or
almost perfectly circular shapes like the examples shown on the left and right, but rather tend to have
circularities like a nearly regular 4–6-sided polygon like the example shown in the middle.

Edge Length. Figure 3(a) shows a histogram of edge lengths (normalized by the average edge length
of its fragment). This distribution shows a peak near the value one, which shows that most edges of
the same fragment have approximately the same lengths. Edges of a perfectly regular polygon would
provide a value of exactly one.

Edge Straightness. Figure 3(b) shows a histogram of edge Straightness is computed by dividing
the length of the straight line segment between the two adjacent junctions by the length of the path
following the sequence of points along the edge. This measure has values between zero (loop) and
one (line segment) indicating how much the edge path deviates from a straight line. We see that the
majority of edges are almost straight (65% have straightness above 0.9). However, some edges are
highly curved (e.g., straightness below 0.5), possibly due to inhomogeneities in the wall materials.

Edge Orientation. Figure 3(c) shows a histogram of edge orientation, the counterclockwise angle
in degrees between an edge’s vector �v and the positive X axis, where the edge’s vector �v spans the
positions of the two adjacent junctions). Although one might think that edges would have dominant
orientations correlated with the angles of support structures and the directionalities of destructive
forces. However, we observe no strong preference for any particular crack direction (small peaks at
multiples of 45 degrees are probably due to discretization of measurements on the pixel image).

Edge Type. Figure 4 shows the distribution of edge types defined by McBride and Kimia [2003]. Pairs
of adjacent fragments are classified into three different types depending on how fragment corners
align, where corners are defined as points on the boundary of a fragment where the contour bends
abruptly by more than 45 degrees. In 14.9% of the edges (type 1), two corners on each fragment align
at junctions delimiting the edge. In 44.3% of edges (type 2), one corner on each fragment aligns at a
junction. The remaining 40.8% (type 3) have no corners aliigned. These results are roughly similar to
the ones reported by McBride and Kimia [2003].

Junction Angles. Figures 5(a)–5(b) show distributions of interior anglesformed by adjacent edges at
junctions. For each junction adjacent to K edges , there are K interior angles formed by pairs of adjacent

ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 3, Article 10, Publication date: October 2012.



10:8 • H. Shin et al.

Fig. 4. Frequencies of edge types (as defined in [McBride and Kimia 2003]).

Fig. 5. Histograms of junction angle properties.

Fig. 6. Frequencies of junction types.

edges (i.e., corner angles of the adjacent fragments). We compute the measure for each of these angles
by forming vectors from the junction position to a point 1/3 of the way along the two adjacent edges and
then measuring the angle between those vectors (see inset in Figure 5(b). We find the minimum and
maximum interior angle at each junction and include them into the histograms shown in Figures 5(a)
and 5(b), respectively. Note that the distribution of minimum angles is centered around 80–90 degrees,
while the maximum angles are centered around 140–160 degrees.

Junction Type. Figure 6 shows the distribution of observed junction types. A junction is labeled “K-
way” if it has K adjacent fragments/edges. For 3-way junctions, we call it a ‘3-way T’ if its maximum
interior angle is between 135 and 225 degrees, that is, if two of its three edges almost form a straight
line. Otherwise, we call it a ‘3-way Y’. It is interesting to note that we observe only 3-way, 4-way, and 5-
way junctions. Among these the vast majority are 3-way junctions (94%), and most of them are “3-way
T”s (76%). These results are roughly consistent with those of McBride and Kimia [2003].

4. HIERARCHICAL FRACTURE MODEL

The statistics presented in the previous section suggest several points about the process by which the
wall painting fractured.

—The predominance of 3-way “T” junctions suggest a sequential fracture process, whereby a crack
forms and propagates until it collides with a previously formed crack. The predominance of
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right-angle junctions provide further evidence of this sequential process as each crack propagates in
the direction orthogonal to the boundary of the fragment being cracked. (The direction that optimally
relieves load is orthogonal to the fragment boundary [Lachenbruch 1962].)

—The exponential distribution of fragment areas (Figure 2(b)) suggests a hierarchical fracture process
where fragments are broken recursively into statistically self-similar patterns. Similar distributions
of fragment areas have been observed in hierarchical fracture processes for mud [Tang and Shi 2008],
ceramics [Kornetta et al. 1998], thin films [Mulheran 1993], and polymer coatings [Handge 2002].

—The distributions of fragment adjacency (Figure 2(a)), fragment convexity (Figure 2(c)), and edge
straightness (Figure 3(b)) suggest that most fragment boundaries can be well-approximated by a con-
vex polygon with a small number of sides (3–8). The predominance of four-sided fragments has been
observed in hierarchical fracture processes for stone [Tsygankov 2000] and desiccated gels [Bohn
et al. 2005].

—The distributions of edge lengths (Figure 3(a)) and fragment area, convexity, and circularity
(Figure 2(b)–2(d)) suggest that hierarchical cracks tend to split fragments into subfragments with
nearly equal areas. To produce a hierarchical sequence of nearly convex and regular polygons, cracks
tend to form across the shortest dimension of each fragment, splitting it in two with almost equal
length sides and high circularity. This observation is supported by the “rule of identical areas,” which
was previously proposed for the fracture of stone [Rats 1968].

Based on the combination of these observations, we conjecture that the “Crocus Gatherer and Potnia”
was fractured by a sequential, hierarchical process where brittle fragments broke recursively into two
nearly equal-size pieces along cracks nearly orthogonal to previous ones.

5. SIMULATION

We use simulation in order to collect further evidence for this hierarchical fracture model. Our ap-
proach is to simulate fracture patterns and compare it with the ones from “Crocus Gatherer and
Potnia.” Specifically, we use the Berkeley Surface Cracking Toolkit described in Iben and O’Brien
[2009] to model a hierarchical fracture process. This software generates crack patterns based on phys-
ical principles. It takes in as inputs a triangle discretization of a surface, a material strength field, and
an initial stress field. The cracks are produced by evolving the initial stress field over time.

Our input is a triangular mesh of a flat surface that matches the aspect ratio of the “Potnia.” We use
a brittle material with an irregular strength field to model inhomogeneities such as pebbles that are
found in the “Potnia” wall painting. Finally, we simulate a situation in which the fresco is hit by diverse
forces at multiple points of impact. (Imagine, e.g., a fresco breaking as the wall wobbles and collapses.)
We believe this is a reasonable scenario but further investigation is required to know exactly what type
of force was acting on the fresco at the time of its fracture. We found that a maximum of 3,000 crack
iterations produce about the same number of fragments (3,000–5,000 fragments) as the “Potnia”.

Figure 7 (left) shows a part of the fracture pattern produced by the simulation. As the comparison
with the patterns observed in the “Potnia” (7 right) demonstrate, the simulation generates fracture
patterns that are similar to actual cracks. In the following text, we present statistics gathered from
the simulation results overlaid with the statistics from Section 3.2.

Fragment Properties. Figures 8(a)–8(d) show histograms of the fragment properties of the simula-
tion (red), compared to those of the Crocus Gatherer and Potnia (black). The small number of adjacent
fragments (3–8) and the exponential distribution of fragment areas are consistent with the data from
the Potnia as well as observations from other hierarchical fracture processes [Tang and Shi 2008; Tsy-
gankov 2000]. The fragments produced by the simulation are also highly convex and circular like the
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Fig. 7. Fracture patterns produced by the Berkeley Surface Cracking Toolkit [Iben and O’Brien 2009] (left), and from the Crocus
Gatherer and Potnia, (right).

ones from the Potnia. However, there is a shift toward even more perfectly convex fragments. We ob-
serve that this difference can be attributed to straighter edges (see also Figure 9(b) below), and we
believe edge straightness is affected by the mesh resolution, which defines the coarsest unit by which
a crack can vary direction.

Edge Properties. Figures 9(a)–9(d) show the edge properties of the simulation compared to the “Pot-
nia”. Like the Potnia, edges of the same fragment in our simulation have approximately the same
lengths, and they are evenly distributed along all directions. The distribution of edge straightness is
also roughly similar to the ones observed in the “Potnia” with the exception that there are more almost
perfectly straight edges. As mentioned before, we believe this difference is due to the discrete nature
of the simulation, which favors cracks following existing edges of the mesh.

Junction Properties. Figures 10(a)–10(c) compare distributions of minimum and maximum interior
anglesformed at junctions, and junction types. The distributions of minimum and maximum angles in
our simulation are roughly similar to those observed in the “Potnia”. However, the maximum angles
are shifted slightly toward 180 degrees. We believe this shift is produced due to the bias in the edge
angles of the input mesh. The simulation favors cracks aligned with edges of the input mesh by snap-
ping cracks to edges if angles between them are less than a threshold. Similarly, it is more likely to
produce junctions aligned with vertices in the input mesh, which explains the greater number of non-
3-way junctions in the simulation. Nonetheless, note that the majority of junctions are 3-way junctions
(80.0%), specifically “3-way T”s(73.1%). This result is roughly consistent with those observed from the
“Potnia” and McBride and Kimia [2003].

In general, the statistics observed from the simulation of a hierarchical fracture process agree with
the ones from the wall painting, providing further support for this model as a possible fracture pro-
cess of the Theran wall paintings. This fracture model has been described in Lachenbruch [1962] and
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 3, Article 10, Publication date: October 2012.
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Fig. 8. Comparison of fragment properties.

Fig. 9. Comparison of edge properties.
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Fig. 10. Comparison of junction properties.

observed in other domains using time-lapsed photography (e.g., desiccation of clay [Tang and Shi
2008]). Our contribution is mainly to argue for it statistically.

6. CONCLUSION AND FUTURE WORK

In this article, we have described methods to analyze the fracture patterns observed in a manually re-
constructed wall painting. We describe an interactive program to trace detailed fragment boundaries in
images and geometric analysis algorithms to produce statistical distributions of lengths, angles, areas,
and adjacencies found in the traced fragment arrangements. From this study, we find that (1) frag-
ments tend to be nearly convex polygons with 3–8 sides, (2) the distribution of fragment areas roughly
follows an exponential distribution, (3) “edges” between two adjacent fragments tend to be nearly
straight, and (4) “junctions” most often appear with three fragments coming together in a T-junction.
These observations suggest a hierarchical fracture pattern where fragments break recursively into two
nearly equal-size pieces along cracks nearly orthogonal to previous ones. We provide evidence for this
model by means of comparison with simulation results of a hierarchical fracture process.

While this study takes a small step, our approach has several limitations and there are many av-
enues for future research. As a next step, future work should perform analysis of many different wall
paintings and ideally many different artifact types. Although our dataset has over 4,000 fragments,
they are all from the same wall painting, and so it may not be representative of other wall paintings
or other artifacts made from different materials. We conjecture that our main conclusions generalize
to other fractured artifacts constructed from brittle materials, but further study is required to confirm
this hypothesis. More broadly, we think that the methodologies used in this study could be useful in
a variety of archaeological settings where analysis of fracture patterns may yield interesting infor-
mation about how an artifact was constructed or broken. For example, it would be intersting to study
whether different materials or causes of failure produce different types of fracture patterns. We plan to
gather more data and to make our tools publicly available so that analysis and comparison of different
archaeological artifacts can be performed in the future.

A second interesting topic for future work is to utilize the observed statistics and fracture model pre-
sented in this article to guide computer-assisted reconstruction algorithms. Funkhouser et al. [2011]
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 3, Article 10, Publication date: October 2012.
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make a step toward this goal by incorporating features inspired by these statistics in a machine learn-
ing approach to find pairwise matches of fragments. However, there is much room for further possibil-
ities, and exploring them fully is still a topic for future work.

Finally, the proposed hierarchical fracture model could be confirmed with high speed video, as was
done for fracture under biaxial loading in Olson [2007].
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