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Texture Stationarization: Turning Photos into Tileable Textures

Joep Moritz Stuart James Tom S.F. Haines Tobias Ritschel Tim Weyrich

University College London

Texture synthesisCasually captured images

Ba
se
lin
e

O
ur
s

Rendering

Figure 1: Casually captured photographs (left) may contain a texture (middle) that a user would like to place in, e.g., a computer game
(right). A baseline approach (PatchMatch [BSFG09] with toroidal boundaries) will produce noticeable repetitions in such input (top row). We
include a measure of stationary into texture synthesis (bottom row) to generate tiling textures ready to be plugged into any renderer.

Abstract
Texture synthesis has grown into a mature field in computer graphics, allowing the synthesis of naturalistic textures and images
from photographic exemplars. Surprisingly little work, however, has been dedicated to synthesizing tileable textures, that is,
textures that when laid out in a regular grid of tiles form a homogeneous appearance suitable for use in memory-sensitive
real-time graphics applications. One of the key challenges in doing so is that most natural input exemplars exhibit uneven spatial
variations that, when tiled, show as repetitive patterns. We propose an approach to synthesize tileable textures while enforcing
stationarity properties that effectively mask repetitions while maintaining the unique characteristics of the exemplar. We explore
a number of alternative measures for texture stationarity and show how each measure can be integrated into a standard texture
synthesis method (PatchMatch) to enforce stationarity at user-controlled scales. We demonstrate the efficacy of our approach
using a database of 118 exemplar images, both from publicly available sources as well as new ones captured under uncontrolled
conditions, and we quantitatively analyze alternative stationarity measures for their robustness across many test runs using
different random seeds. In conclusion, we suggest a novel synthesis approach that employs local histogram matching to reliably
turn input photographs of natural surfaces into tiles well suited for artifact-free tiling.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image processing and Computer Vision]: Scene Analysis—
Shape

1 Introduction

Textures, that is, spatially-varying appearance, are a visually impor-
tant aspect of real-world scenes. A variety of methods emerged in
computer graphics early on to efficiently mimic the richness of real-
world textures: classic texture mapping [BN76], still the standard
in many interactive applications, procedural textures [Per85] and
synthesis-by-example [HB95, EL99], which allow computational
creation of texture across arbitrarily large domains, as well as acqui-
sition using advanced measurement devices [DvGNK99], and last
but not least user-guided texture generation [Hae90].

Due to their small memory footprint, rectangular textures that
lend themselves to a tiling of the plane play a central role in real-
time computer graphics. Ideally, such a texture tile exhibits toroidal
continuity, that is, top and bottom, and left and right edge, respec-
tively, seamlessly fit together. That alone, however, is not sufficient
to create the illusion of a continuous surface texture when tiled.
Depending on the texture content, individual features may visually
“stick out” as repeating patterns under tiling. In practice, this effect
is mitigated by skilled artists who carefully warp and blend original
texture content to create a continuously tiling base image.
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Surprisingly little work, however, has been dedicated to synthe-
sizing tileable textures computationally, despite the mature body
of work on texture synthesis in general. Automated generation of
tileable textures from unconstrained image materials would be in-
valuable in applications that employ user-provided content, such
as, casual massive multi-player online or augmented-reality games,
where one cannot assume users to be experts in controlled capture
and professional post-processing.

We address this challenge by devising an approach to convert
any given texture-like image into a texture that only exhibits a
user-prescribed maximal amount of perceived repetitiveness when
tiled. To this end, we first introduce different measures of perceived
stationarity . A signal is called stationary if, according to some
measure, it is perceived similar across a domain. We then suggest a
texture re-synthesis that explicitly enforces a prescribed amount of
perceived stationarity.

A perfectly stationary texture would be a uniform color that tiles
perfectly (no visible repetition), defeating the purpose of texturing.
Strongly non-stationary textures tend to be visually rich, but appear
repetitive when tiled. In between lies a continuum that we explore.
Our method allows synthesis of tileable textures with different de-
grees of stationarity, allowing a user to pick the version most suited
for their application. Beyond that, we demonstrate a perceptually-
motivated approach to linearize perceived stationarity to produce
a texture sequence that shows an even progression of perceived
stationarity, allowing for an even more accurate selection by the user.
In summary, our main contributions are:

• a set of measures for perceived texture stationarity,
• an algorithm to enforce a desired stationarity for a texture,
• perceptually-motivated linearization of stationarity.

After reviewing previous work in Sec. 2, we propose our measure
of stationarity in Sec. 3 which is then used for “stationarization” in
Sec. 4; we show results of our approach in Sec. 5.

2 Previous Work

After recalling fundamentals of texture perception, in particular
spatial grouping, we will relate our approach to existing work on
texture synthesis and extraction.

Texture perception The importance of texture on perception has
been acknowledged long before algorithms to analyze textures had
been proposed [Att54]. We will here recall the most relevant aspects
while referring the reader to the survey by Rosenholz [Ros14].

A question of particular importance to our objective is the one
of texture segmentation [Jul62], i.e., a formal way of separating
regions which are perceived to have different texture. In the case
where multiple texture segments are present in an image, the image
requires stationarization, otherwise the result will look repetitive
when tiled.

Different hypotheses exist about how the human visual system
performs segmentation, but most agree that the image is first con-
verted into a feature representation and then grouped, such that areas
with similar features appear as one segment. The simplest descriptor
is the 1st- and 2nd-order moments [Jul62] (mean, variance), while
evidence exists that higher orders (skewness, kurtosis, etc.) con-
tribute little to the perception of stationarity. We experiment with

moments of different order and indicate where they have an impact
on visual quality.

However, some textures have identical 1st- and 2nd-order mo-
ments yet their primal and gradient derivatives still have a clearly
perceivable segmentation [VB78], historically formalized in terms
of Buffon needles [Jul65]. To address this, we can think about
arbitrary spatial aggregations of RGB values into features, where
the mean and variance of gradients are special cases [Cae85].

Extending derivatives, texture can be considered the combination
of bases, such as steerable filters [FA91], which quantify changes
of different frequency and orientation. Or alternatively as a combi-
nation of responses to filters, commonly formalized as ‘Textons’,
which quantify the response. Due to the indirect nature of textons,
we experiment with the former, steerable filters.

The perception of texture has been explored in statistics, geology
and the environmental sciences, with a comprehensive overview
by Taylor et al. [TEN14]. Common approaches utilize wavelets, as
in [TEN14], extending prior work on univariate time series to the
spatial domain; alternatively there exist Bayesian methods [Fue05].
The work in these fields is similarly grounded in 1st and 2nd mo-
ments [PR69]. It should be noted that these approaches focus on
images containing a unique texture, e.g., carpet, as opposed to ca-
sually acquired images that contain multiple textures. This results
in the proposed measures focusing on macro variations within the
texture, in contrast to the broader discrepancies e.g., stains, rusting,
or cracked paint.

Following these ideas, we devise a method that seeks to achieve
the opposite of segmentation methods, while being guided by statis-
tics literature: by enforcing stationarity in the perceptual feature
space to drive synthesis of a repeatable texture we explicitly avoid
generating textures with elements that appear repetitive when tiled.

Texture synthesis Synthesis of images is a traditional computer
graphics problem, with multiple avenues in the literature. We choose
to focus on the problem of preventing perceived repetition within a
synthesized image, and focus on relevant methods to this end.

Texture synthesis literature has focused on offline methods, where
deep visual analysis or computation can be performed. Early ap-
proaches focused on procedurally generated textures [Per85] at high
computation cost and complex parameters. Avoiding the complex
parameters, Efros et al. [HB95, EL99,EF01] stitched together pixels
or patches from a source image to synthesize non-repeating textures.
These approaches avoided repetition, by adding infinite amounts of
variation on demand, but are not inherently tileable.

Given an arbitrary input exemplar texture, synthesizing a new one
can be seen as an optimization problem [KEBK05, WSI04]: each
neighborhood in the new image should be as similar as possible to
a neighborhood in the source image. Optimization-based methods
produce images that have the same feature statistics as the input
according to different feature spaces, but it is less clear what happens
if the input does not have homogeneous statistics, i.e., it has more
than one segment. Typically, the stationarity requirement is not
explicitly addressed, as the input is assumed to be stationary. For
moderate non-stationary input, these methods do not necessarily fail,
as often the underlying stochastic optimization is able to find a local
minimum that is still tileable. In many cases, and in the presence
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of more noticeable non-stationarity in the input, however, a tiling
of the synthesized texture leads to a clearly visible repetition. This
problem persists, even when toroidal boundary conditions (see fig.
1), a prerequisite for tileability, are included in the optimization.

PatchMatch [BSFG09] is a fast algorithm to find (local) minima
of such an optimization problem. Our approach will build on this
method, by extending it with toroidal boundary conditions and
stationarity control.

A recent trend in texture synthesis is to use convolutional neural
networks, first used in style transfer [GEB15, AAL16, JAFF16].
In Aittala et al. [AAL16] a histogram prior is used to encourage
stationary solutions when using a neural network to optimize for
a texture. Their results show stationary textures, and the prior as-
sures avoiding non-stationary results. As with the statistics literature,
Aittala evaluated on already largely homogeneous input textures.

Another approach to hiding repetition during texturing is to use
real-time texture synthesis [LH05, LL12]. Vanhoey et al. [VSLD13]
use offline segmentation to propose variation in the synthesized
texture at runtime. The reliance of such approaches on custom GPU
code and large runtime resources makes them less attractive to adop-
tion. Therefore, we focus on achieving visually appealing offline
results that can be used in any standard rendering environment.

Stationary Texture Synthesis Typically, in example-based tex-
ture synthesis, inputs are assumed broadly stationary [HB95, EF01,
AAL16], thus lending themselves to stationary output.

Dai et al. introduced a measure of “synthesizability” [DRV14] that
is learned from a set of over 20,000 annotated textures. This measure
can be used to crop the most synthesizable rectangle from a texture
for synthesis purposes. However, the useful source area is not always
a rectangle, and the “offending” elements might be scattered, such
that a single rectangle is a poor fit. Even from a broadly stationary
input, synthesis can fail and produce non-stationary output that
cannot be tiled.

Common deviations from stationarity occur due to stain-
ing [YY14] and/or weathering in natural textures [BKCO16].
Reducing weathering also implicitly increases stationarity.

The most acknowledged approach to non-repetitive texturing with
limited resources is Wang tiles [CSHD03, LD06, XM10, YBY∗13].
As Wang tiles are tiled along each same-colored edge, they need to
solve a similar problem to ours: making a texture tileable. However,
these methods, again, start from a stationary input and use graph
cuts to retain stationarity across all same-colored corners or edges.
While Wang tiles are attractive from a theoretical point of view,
and can by design produce infinite, non-regular layouts, they have
not yet found wide-spread use in interactive applications such as
computer games.

Texture extraction Less attention has been devoted to extracting
the dominant texture from complex images. While our approach is
fully automatic and not explicitly for a single texture, for complete-
ness we include a review of these techniques here.

Building on texture perception, texture segmentation can be used
to find the dominant texture in an exemplar [LDR09, WH13] by
identifying regions of the input that are themselves stationary. Alter-
natively Lu et al. [LDR09] and Lockerman et al. [LSA∗16] segment

images in a multi-scale fashion to generate a texture palette that
can be used for texture painting. They also show an application
where they pick the largest segment and synthesize using that. But,
the approach is unable to control the amount of stationarity of the
resulting texture, and therefore is ill-equipped to source multiple
segments while maintaining stationarity.

An intuitive approach is to require the user to select the desired
region to be synthesized. For example Eisenacher et al. [ELS08] use
a selected area to build a small 3D model. Using the 3D model it
can correct for perspective and use the photographs to synthesize
a texture. It can also use the 3D model to synthesize back into the
image; Eisenacher did not consider the tileability of the texture.

3 Perception of Visual Stationarity

Perception of stationarity has not been explicitly accounted for in
texture synthesis. We suggest several plausible measures, before
making our recommendations on how to enforce the stationarity of
an exemplar. For our purpose, we not only need to passively measure
stationarity, but also need a practical way to enforce it, which will
be discussed in Sec. 4.

To account for stationarity, we need to find a notion of stationarity
flexible enough to compare different theories of texture perception,
that is computationally reasonable, and can be included in an op-
timization. To this end, we express the degree to which a signal
f (x) deviates from stationarity across a domain D according to the
measure S as the summed differences between a feature-space
representation of the signal at any two locations in the domain:

s( f ) =
∫
D2
S( f )(x1) 	S( f )(x2) dx1dx2 , (1)

where 	 is a suitable difference between perceptual feature repre-
sentations. In other words, as s( f ) approaches zero, the texture f is
perceived the same everywhere. Note, that S is a functor, mapping
the entire function to a new (feature) space, and not a function of
the signal value at any single location. This allows us to take the
entire spatial neighborhood into consideration, for instance to build
a histogram. We note our stationarity is similar to saliency [IKN∗98],
which also identifies locations that are different to other locations
according to a perceptual measure.

We will here consider 2D textures, so, without loss of generality,
D is the unit square. Note that stationarity is only used to assess
differences within the texture, not in respect to any exemplar. The
following measures and projections are performed over scalar val-
ues and are done independently in a de-correlated perceptual color
space — we use CIE L*a*b*. Additionally, while there are a variety
of improved measures for distances between two colors in this color
space, we opt for the standard of Euclidean distance.

3.1 Moments

The easiest notion of stationarity is to consider the vector of up-to-
p-th-order-weighted local moments, as in

Smom( f )p(x) ∈ D→ R =
∫
D
wd(x, y) f (y)pdy , (2)

where wd(x, y) is a spatial weight function such as the unit Gaussian.
The first moment p = 1 is the mean, the second at p = 2 the variance,
etc. The earliest theories of texture segmentation [Jul62] have used
moments as descriptors, before counter-examples have indicated
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the human visual system (HVS) might do more complex operations.
Our results also indicate that enforcing stationarity based only on
a notion of moments is at the expense of increasing the texture
cost, i.e., producing results that do not look like the exemplar. As a
distance operator 	 we use squared difference.

3.2 Histogram

A more complete description of local statistics are weighted local
histograms with n bins:

Shisto( f )(x) ∈ D→ Rn =
∫
D
wd(x, y)wr,i( f (x))dy , (3)

where wd is the domain weighting function, a unit Gaussian with
standard deviation σ, a key control parameter to explore and wr is
the range weighting function of bin i, (a Parzen window) typically
a narrow Gaussian or a box. As a distance operator 	 we use earth
mover distance.

In texture synthesis, others have matched the histogram of the
(stationary) input exemplar texture to the current output solu-
tion [KFCO∗07, KNL∗15]. In our approach, we match local his-
tograms at different positions within the output exemplar produced,
consuming a non-stationary input.

3.3 Steerable Filters

One popular interpretation of texture perception is that it is merely
a by-product of low-level to mid-level vision where the complex
cortical areas V1 and V2 convolve the retinal image with a bank of
filters. A simple example of such a bank are steerable filters [FA91],
that select different orientations and magnitudes. In practice, the
definition is equivalent to the histogram, except that the binning is
done on each steerable response channel, instead of on each color
channel. The response of asteerable filter with orientation o and
magnitude m, is then

Ssteer( f )(x) ∈ D→ Rn =
∫
D
wd(x, y)wr,i(Fo,m ∗ f (x))dy ,

(4)
where the definitions from above apply, ∗ is convolution and Fo,m is
the respective steerable filter kernel for orientation o and magnitude
m [FA91]. We use the freely available implementation of steerable
pyramids [Sim15] by Simoncelli, with the default parameters for o
(4) and m (1), resulting in 12 dimensions in total (4 for each color).

4 Texture Stationarization

Given a suitable measure for perceived non-stationarity from the
previous section, we now wish to synthesize (tileable) textures while
aiming at minimizing this measure.

Similar to Heeger and Bergen’s method [HB95], we use an itera-
tive scheme where synthesis steps interleave with steps where we
re-project the data onto a desired manifold. In contrast, however, we
do not enforce the global statistics of the exemplar (which would
only make sense if the input was assumed stationary); instead, our re-
projection step aims at minimizing a stationarity cost function based
on a measure from Sec. 3. This leaves room for combination with an
existing texture synthesis method, similar to Aittala et al.’s work that
uses a moments-based prior [AAL16] to steer the gradient-descent
of a CNN-based texture generator.

In our case, we chose to use the widely successful PatchMatch
algorithm [BSFG09]. Its hierarchical, iterative scheme lends it-

self naturally to repeated re-projection of the intermediate solu-
tion (Sec. 4.2). Accordingly, we extend this algorithm by adding a
new stationarity cost (Sec. 4.1) to the original texture cost, as well as
toroidal boundary conditions to ensure tileability of the result. We
re-project the current solution onto the space of stationary textures
after each iteration of PatchMatch (Sec. 4.3).

4.1 Cost

Given a texture image f , we measure, and optimize for two cost
functions separately: ctext and cstat. The texture cost ctext expresses
that the result texture f should locally look like some neighbor-
hood in the exemplar e [WSI04]. Formally, this is the integral of
the minimal difference of all neighborhoods in the result and the
exemplar,

ctext( f ) =
∫
D

min
y∈D

{∫
P
‖ f (x− z)− e(y − z)‖22dz

}
dx , (5)

where P is the domain of a texture patch expressing a local neigh-
borhood (with toroidal connectivity, see below). The size of P in
our implementation is always 11 × 11 pixels at a typical texture
image resolution of 256 × 256, but we are not limited to this size.
The stationarity cost cstat( f ) is simply s from Eq. 1, cstat( f ) = s( f ),
and depends on the given measure S.

4.2 Optimization

The algorithmic outline closely follows PatchMatch as originally
formulated [BSFG09].

PatchMatch uses a multi-scale approach. The top level of our
scale pyramid starts at 64×64 pixels, or 1/4 the size of the final
image. We perform 30 iterations at this level, letting the algorithm
do most of the work here. At subsequent levels convergence is
reached within 2 or 3 iterations, making mostly minor adjustments
to account for up-scaling of the image. We scale up by a factor of
1.3 [KNL∗15].

We also include two typical improvements found in the recent
literature, making adjustments for our setup. The first is the spatial
uniformity term of Kaspar et al. [KNL∗15] that ensures the resulting
texture uniformly samples from the exemplar. As the size of our
high-resolution photos is much greater than the size of the resulting
tileable texture, we need to adjust the spatial uniformity term. We
change the formula for ωbest, which represents the ideal number of
times an exemplar pixel is used in the synthesized result. Our new
formulation allows pixels to always be used at least once:

ωbest =max(1, |T ||S | )N
2 (6)

The second improvement is a global histogram matching between
the resulting texture and the input exemplar similar to Kopf et
al. [KFCO∗07]. Unlike their algorithm, our histogram enforcement
is not integrated into the “voting” phase. Instead, we simply match
the histogram of the synthesized texture to a target histogram, at
every iteration. This target histogram is created by blending the
histogram of the exemplar with the histogram of the synthesized
texture, using a given parameter α, and by interpolating along the
x-axis of the CDF [MZD05]. This allows us to smoothly fade out
the effect over multiple iterations, instead of turning it off abruptly
like [KNL∗15].

The full approach is outlined in Algorithm 1. Notice that we apply
PatchMatch last, allowing the original pixel values of the source
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image to produce the final image, unaltered by histogram matching
or stationarization.

Input :Exemplar texture e
Output :New texture f
f0 := randomScramble(e0)
for all pyramid levels j do

fj := upsample( fj−1)
for i = 0 to nmax do

fj := matchHistogram(ej , α)
fj := projectS( fj )
fj := patchMatch(ej , fj )

end
end

Algorithm 1: Pseudo-code for synthesis of stationary textures.

Toroidal boundary conditions Traditional texture synthesis al-
gorithms, including PatchMatch, do not produce tileable textures.
We make the following modifications to PatchMatch to ensure cir-
cular boundaries:

• Any time a neighborhood is accessed in the synthesized image, it
wraps around as needed. This affects the implementation of the
original algorithm’s distance function and its blending function
used in the “voting” phase.

• At the edge of the synthesized image, the propagation step passes
good matches on to neighbors on the other side.

• PatchMatch’s nearest-neighbor field is defined for every pixel of
the synthesized texture, no longer leaving a boundary undefined.

4.3 Stationarity Projection

At this point, the current solution is enforced to become station-
ary according to one of the measures S above. This can be seen
as iterative optimization, where PatchMatch performs a step of
optimization, and we perform a projection onto the manifold of
stationary textures.

The project operation is implemented in different ways for
different S. This projection is not generally a linear operation. Pre-
vious work uses linear operations based on the first-order gradients
of the cost [AAL16] or loss [JAFF16]. Our approach immediately
enforces stationarity each iteration.

All projections occur independently in every color channel. We
will now discuss the projections for different notions of stationarity.

Histogram The histogram measure projecthisto is a generaliza-
tion of the moments to arbitrary distributions. First, cumulative
histograms are built for every pixel from its neighborhood, using
Gaussian-neighborhood weighting. We then match each local his-
togram to the global histogram as follows: the value of each pixel
is updated so that c′ = G(F(c))−1, with F the cumulative histogram
for the pixel, and G the cumulative histogram of the entire image.

An approximation and optimization of this local histogram match-
ing starts by dividing the entire image into overlapping blocks of
the neighborhood’s size, with their centers spaced by k pixels, with
k = 2 at the top of the pyramid, increasing to k = 5 toward the
bottom. For each block, a weighted histogram is built, as before.

All of the pixels in each block are then adjusted by matching
the block’s histogram to the global histogram. The resulting, over-

Figure 2: Our data set of 118 non-stationary images. The upper
part is from previous papers and the lower is new captures.

lapping blocks are merged to form a new image by blending them
together, using the same Gaussian weights. For the small k used
we found the results virtually indistinguishable from dense local
histogram matching, while significantly reducing run time.

Moments The same machinery that is used to project (complex)
general histograms can be used with histograms described only by
their (simple) moments. This requires converting back the moments
into histograms. This is done by fitting a Gaussian distribution for
second-order, or Pearson distribution for third and fourth (using the
closed-form solution of Johnson et al. [JK70]), to have the correct
moments, and by sampling them into discrete histogram bins.

Steerable filters Steerable filters produce an (over-complete) high-
dimensional descriptor C for every pixel. We again build histograms
for each dimension of these descriptors, followed by a local match-
ing of every pixel to its surrounding histogram as explained for
the histogram measure projecthisto. The result is a new over-
complete descriptor vector C′. Finally, we need to find an image
that would result in C′ when applying the filter bank. While several
advanced methods to solve this inverse problem exist [SWRC06], we
opted for the simplest one that just interprets C′ as linear weights
for a convex combination of basis patches to compute the result
image, as done by Heeger and Bergen [HB95].

4.4 Perceptually-Motivated Stationarity Control

The main parameter of our approach is the size σ of the spatial
weighting kernel: if σ is chosen large, the stationarization considers
large areas of the image; if it is small, it will attempt to make
small details look similar across the image. How much a result
visually changes in response to changes in the kernel size σ, how-
ever, strongly depends on the content. To provide the user with a
convenient way to control the effect, we initially sample the spatial
kernel size domain using n different values σ1, . . .,σn (Fig. 10).
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In our experience, such a simple palette of gradated options is
excellently suited to have a user select a suitable window size. To
further quantify the effect of window size on perceived stationarity,
and to find a more fine-tuned window size, we propose a texture-
dependent remapping of window sizes into a perceptually-motivated
space. To that end, we determine the difference in appearance be-
tween two results with consecutive window sizes σj and σj+1,
dj = ‖σj,σj+1‖M, using a suitable difference measure M. Initially
we experimented with established perceptual metrics (e.g., SSIM),
but found them too sensitive to changes of feature locations. Instead,
we settled on the earth mover’s distance between histograms, as it
does not depend on the location of features. Empirically we verified
that is correlates well with perceived difference.

By inverting the mapping σi 7→ di , we define an appearance-
normalized space of window sizes. Re-synthesizing a texture for
window sizes regularly distributed in that space, obtains a perceptu-
ally uniform progression of textures.

5 Results

After defining our data set in Sec. 5.1 and the procedure of instru-
mentation in Sec. 5.2, we report the main quantitative analysis in
Sec. 5.3 and qualitative results in Sec. 5.4, including comparisons to
other works, before concluding with applications in Sec. 5.5.

5.1 Dataset

Addressing the challenge of dealing with non-stationary images
we contribute a new data set. The images contain textures that are
both non-stationary and subject to the diverse challenges of casual
images, such as slight perspective and shading. It consists of 118
images, visualized in Fig. 2. It contains (i) 16 textures from previous
papers ( [LDR09, BKCO16]); (ii) 38 publicly available textures and
(iii) 64 difficult exemplars we acquired in an urban area on a cloudy
day with a mobile phone camera. The data set is publicly available
at http://bit.ly/TexStat.

5.2 Procedure

We will first introduce our protocol for comparing synthesized tex-
tures, which are stochastic and depend on random seeds, i.e., they
are not point measures but random variables.

Protocol Due to the stochastic nature of PatchMatch, our approach
— as well as many other example-based synthesis algorithms — can
sometimes produce results of varying quality. One seed might be
lucky and produce a stationary result without explicitly enforcing it
such as we suggest. In fact, this can even be the majority of cases for
inputs that are close to stationary with only a few deviations from
stationarity. However, there is a minority of cases, where problems
persist. We will later formally study how large this group is in
our data set and how likely they are to fail to produce a stationary
outcome. Our aim is to provide guarantees for avoiding them.

When comparing algorithmic variants based on (non-)toroidal
PatchMatch, we make sure to use identical seeds. We found this
essential to obtain more stable (less random) comparisons, while at
the same time giving the baseline (toroidal PatchMatch) a competi-
tive advantage: we first find the seed (out of 10) that produces the
most stationary (lowest cstat) result with toroidal PatchMatch, and
then use that seed for all variants of our approach. We verified that,

with inferior seeds, our stationarizing approaches would still lead to
similar results while the baseline often performs worse.

We include a formal analysis, with random seeds, demonstrating
our approach’s stability, while other approaches produce outliers in
terms of stationarity. Stationarity is best seen for an exemplar when
either repeating it (in this paper in a 2×2 layout, or a perspective
visualization that shows a “stress test” where the texture is used to
fill the entire plane, at many different levels of scale.

Baselines We will compare against many alternatives in this paper,
and in the supplemental material; they are: (i) directly use the input;
(ii) run PatchMatch, i.e., without optimizing for stationarity and
without toroidal boundary conditions; (iii) same as before, but with
toroidal boundary conditions; (iv) the GIMP functionality “make
seamless”, which shifts the image by half in horizontal and vertical
direction before a feathered blend; (v) variants of our approach
using different notions of stationarity, such as a) moments, b) local
histograms, and c) steerable filters. All these baselines are contained
in the supplemental material, and we only show examples here.

If not said otherwise, we refer to a result of “our approach” as to
a result of (v).b: optimization for stationarity using local histogram
matching. We found this combination to provide the best trade-off in
computational effort, complexity and visual quality. In the same way,
if not said otherwise, we will refer to the “baseline” as to method
(ii): optimization for texture cost, without stationarity enforcement
but with toroidal boundary conditions.

5.3 Quantitative Analysis

The plot in Fig. 3 shows a quantitative analysis of our approach.
Instead of reporting anecdotal observations of single exemplar
instances, our data set will allow us to consider a large ensem-
ble of textures in terms of their statistics. Additionally, another
methodological novelty of this work is to look at the “stability” of
results under different random seeds.

Costs First, Fig. 3.a shows that the sum of the stationarity and
texture costs (labeled combined cost) is going down as a result of
our approach. This indicates, that we produce textures both similar
to the input exemplar but also with desired stationarity. After 25
iterations, the cost has converged, and we can look at the distribution
of costs across the data set in Fig. 3.b–d. We see that our distribution
of costs (blue) compares favorably to the baseline, PatchMatch with
toroidal boundary conditions (orange). As this cost is a sum of the
texture and the stationarity cost, we look into the two in isolation
in Fig. 3.c and d. We see that for the baseline, the stationarity cost
is high, while the texture cost is low. By employing our stationarity
enforcement, we reduce the stationarity cost significantly, while
only slightly compromising on texture cost.

Stability Having a robust notion of cost enables us to look into
what happens when the seeds are changed. Methods that work well,
should be stable, i.e., the resulting cost should not change when
the seed changes. To this end, we repeat the above experiment, for
N = 10 random seeds. This number of samples N is suitable to
predict the population mean and variance, as the 0.95-confidence
t-test interval widths are only 0.014 for our mean, 0.013 for baseline
mean, 0.060 for our variance and, 0.056 for the baseline variance,
i.e., smaller than a bin in the chosen visualization.
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Figure 3: Numerical analysis of cost optimization and cost distribution over our data set. a) Median (thick line) and 90-percentile confidence
intervals (thin lines) of the total cost of all samples in our data set (vertical) as a function of iteration count (horizontal). b) Distribution of
the total cost after the optimization has finished. We show the distribution as a transposed histogram, where the horizontal axis is frequency
of occurrence in texture count and the vertical axis is cost, to match the axis of the first plot. The horizontal axis is the number of textures
where the cost takes a certain value. We show both our approach (blue) and toroidal PatchMatch that does not account for stationarity in the
synthesis (orange). c:) and d:) Stationarity cost and texture cost alone, again after optimizing both for the combined cost.
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Figure 4: Stability analysis: distribution of stationarity cost means
(left) and variances (right) across the data set. Texture synthesis is
repeated for each exemplar with ten different random seeds. a) Most
of the textures have a lower mean cost (blue) than previous work
(orange) indicating we perform better on average. b) At the same
time, we see that the variance of the cost under random seeds is low,
indicating, that we are not only better on average, but rarely worse.
In contrast, previous work has a high variance, showing that it is
not only worse on average, but also has a substantial number of
cases where it fails. (0.95-confidence t-test intervals on the x-axis.)

To understand the outcome, we now look a the mean and variance
of the costs when seeds are randomized. The distribution of the
mean and variance of the stationarity cost is seen in Fig. 4. Note,
that these are not the mean and variances of the distributions we plot,
but we plot a distribution of means and variances across an ensemble
of statistics. In Fig. 4.a, we see that the stationarity cost is less, even
when seeds change for our approach, an outcome in agreement with
Fig. 3.c. More strikingly, we see that for the previous method (again
PatchMatch with toroidal boundary conditions), many exemplars
show a much higher variance. This indicates, that the previous
approach can produce textures that are stationary, one has to be
lucky: sometimes stationarity is a random by-product, sometimes
not. In our case, variance is low, indicating it will always have a
prescribed stationarity.

5.4 Qualitative Results

We now show qualitative visual results. The reader is encouraged
to explore the interactive supplemental material, where we show
results for our approach, as well as many alternative and competing
approaches for the entire data set using different visualizations.

Wang les Ours
Figure 5: Comparison between Wang tiles (left) and our approach
(right). Both approaches successfully avoid obvious periodicity, but
Wang tiles show a visually distinctive patch of rust repeatedly.

Typical results of our approach are shown in Fig. 13.

Consideration of Stationarity For a visual comparison of station-
arity we consider two different aspects — firstly the homogeneous
nature of the generated texture and secondly the degree of preserved
visual characteristics. The latter competes with the notion of station-
arity, resulting in a trade-off between the two. In some cases the
artist might prefer a homogeneous result, but usually they prefer to
maintain characteristic details of the source texture.

Comparison of stationarity measures Applying these considera-
tions of stationarity, Fig. 9 shows a comparison between the different
methods for enforcing stationarity. The various synthesized ‘brick’
textures show how histogram matching is able to maintain both the
structure and the high frequency information, that is lost through
moments. Alternatively, “paint” demonstrates the advantage of the

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

183



Joep Moritz, Stuart James, Tom S.F. Haines, Tobias Ritschel and Tim Weyrich / Texture Stationarization: Turning Photos into Tileable Textures

averaging effects that hinder “brick”, producing a very even texture.
It is the responsibility of the artist to decide on the suitability of
each image. These results are indicative across the data set, empha-
sizing that moment enforcement of stationarity is more likely to
produce more uniform textures, while more complex textures can
be generated using histogram matching or steerable filters.

Comparison to Wang tiles Fig. 5 compares our approach to Wang
tiles [CSHD03] , generated with two colors on each edge to obtain
16 tiles. The results are broadly similar, but Wang tiles are unable to
avoid non-stationary elements. Consequentially, while the patch of
rust may not form a regular pattern its repetition is still noticeable. It
would be possible to combine our approach with Wang tiles to obtain
the benefits of both. Finally, our approach works as a transparent pre-
process on the texture image, while Wang tiles require both access to
the render code, as well as more memory and computational effort.

Comparison to Bellini et al. The different but related task of de-
weathering an image has been addressed by Bellini et al. [BKCO16].
In Fig. 6, we applied both our baseline synthesis, as well as our
proposed algorithm, to both input and output of their algorithm. In
each scenario, our approach successfully stationarizes the texture,
while it is evident that the output from [BKCO16] is largely de-
weathered but not consistently stationary. Particularly of interest
are Fig. 6’s 3rd column, odd rows, where we produce a stationary,
but not de-weathered, tileable texture from an original exemplar.
Also note how using the two algorithms in tandem (3rd column,
even rows) yields meaningful, i.e., de-weathered and stationarized
results.

Comparison to Lu et al. We ran our implementation of [LDR09]
against our data set to produce a segmentation of each photo. Their
algorithm identifies one segment as the dominant one, which we use
to generate a binary mask. We perform standard texture synthesis us-
ing PatchMatch with toroidal boundaries, with the mask identifying
areas in the photo to use as input data. Areas outside of the mask are
excluded entirely. For comparison we run the same synthesis algo-
rithm, with our stationarity enforcement enabled. All results (Fig. 7)
appear stationary, but those of Lu et al. lose detail, as it appears
too aggressive in excluding salient features. Our approach preserves
more larger-scaled details, while the segmentation greedily picks an
“easy” homogeneous area from which to synthesize exclusively.

Limitations Failure cases of our approach are shown in Fig. 8. The
first column of Fig. 8 shows how large scale structure is effectively
removed by our algorithm, even though repetition of this structure
would not look out-of-place. This is a particularly common problem
with man-made objects. It can be avoided by choosing a large value
for σ, but this would decrease stationarity by allowing smaller
features to vary spatially. In the case of Fig. 8, the rust stains would
re-appear. Future work could investigate methods to control station-
arity separately at different levels of scale, or explicitly account for
man-made structures similar to [KNL∗15].

In a similar vein, the second column illustrates a problem with
tiny salient features: the little pebbles are too small to be identified
and removed by the algorithm. The third column of Fig. 8 illustrates
our cognitive ability to pick out certain shapes particularly well (the
small black circle), while the algorithm does not see anything out of
the ordinary. Further work may detect such salient features.
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Figure 6: Texture synthesis performed on input and output of
[BKCO16]. The left column is taken directly from their paper: an
input exemplar, and the de-weathered output below it. The other
columns show the results of running toroidal PatchMatch (middle)
and our method (right) on the respective left-most image.

Human observers generally perceive repetitiveness more easily as
a texture becomes smaller. While we do not explicitly take this into
account, this effect could be addressed by increasing the size of the
output texture (which may require more texture re-use or a larger
input exemplar). Alternatively, a higher level of stationarity could
be enforced. Optimal parameters for different viewing conditions
could be an interesting avenue for future work.

5.5 Applications

Thanks to our continuous formulation, a user-interface for designing
tileable textures could can generate a single texture with locally-
prescribed stationarity (Fig. 10). Such a texture has little applied
value but can provide an effective user interface. Additionally, we
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Input texture Lu et al. Ours Input texture Lu et al. Ours Input texture Lu et al. Ours

Figure 7: Comparison between an approach that segments out salient features before synthesizing [LDR09] and our algorithm. In the first two
textures, their algorithm shows poor segmentation performance, as critical parts of the structure are masked out. In the third example, our own
algorithm starts exhibiting modest repetitiveness, while Lu et al. again excessively remove detail.
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Figure 8: Three failure cases (columns) where our approach could
not stationarize the input (top row) into a useful result (bottom row)

compare between a direct gradient and a perceptually uniform one
in Fig. 11. Finally, we show a typical mobile-game scene, that has
been textured directly from photographs in Fig. 12.

6 Conclusion

Texture mapping, if done right, can increase the visual realism, even
on devices with smaller compute capabilities. We have addressed a
key limitation of texture mapping in this article: the need of expert
knowledge required to turn a texture-like image into a tileable texture
that introduces detail, without producing repetition.

Our approach is subject to certain limitations: it assumes the
image to be fronto-parallel and we have not yet explored the combi-
nation with systems to unproject. An interesting avenue of future
research could be to employ stationarity to help unprojection and
vice versa. We would think that our methodology could be applied
to extensions for BRDFs, 3D textures, video textures or animations
that all could account for more explicit stationarity control.
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Figure 9: Comparison of stationarization using different models. (a) The input texture. (b) Stationarization by subtraction of low-pass filter,
i.e., matching the local mean. (c–e) Stationarization by fitting 2nd, 3rd and 4th order moments to the local histogram. (f) Using local histogram
matching. (g) Using local histogram matching of steerable filter responses. All images show cut-outs, the top row only showing a 2-by-2 tiling.
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Figure 10: Gradual variation of stationarity from left to right for different textures in different rows. For each stationarity level we show one
texture tile; adjacent tiles often appear near-seamless, due to their common synthesis seed.
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Figure 11: Comparison of a gradient linear in σ (1st and 3rd row) and a perceptually linear variant (2nd and 4th row). The linear progression
may exhibit abrupt changes of stationarity, while the latter variant spreads across the entire domain allowing for a more convenient navigation.
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Figure 12: A game scenario showing a variety of objects with tiling textures produced by toroidal PathMatch (right) and our approach (left).
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Figure 13: Starting from different input exemplars (1st row) we compare the baseline approach (2nd and 3rd row) to our approach (4th
and 5th row). We show both a 2×2-grid 2D view and a perspective 3D visualization. In all cases, our approach reproduces the exemplars’
appearance, yet the results are stationary enough to even tile the large 3D plane without making it appear overly repetitive.
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