
Pacific Graphics 2010
P. Alliez, K. Bala, and K. Zhou
(Guest Editors)

Volume 29 (2010), Number 7

Density-based Outlier Rejection in Monte Carlo Rendering

Christopher DeCoro†‡ Tim Weyrich§ Szymon Rusinkiewicz†

†Princeton University ‡Yale Law School §University College London

Abstract
The problem of noise in Monte-Carlo rendering arising from estimator variance is well-known and well-studied.
In this work, we concentrate on identifying individual light paths as outliers that lead to significant spikes of
noise and represent a challenge for existing filtering methods. Most noise-reduction methods, such as importance
sampling and stratification, attempt to generate samples that are expected a priori to have lower variance, but
do not take into account actual sample values. While these methods are essential to decrease overall noise, we
show that filtering samples a posteriori allows for greater reduction of spiked noise. In particular, given evaluated
sample values, outliers can be identified and removed. Conforming with conventions in statistics, we emphasize
that the term “outlier” should not be taken as synonymous with “incorrect”, but as referring to samples that
distort the empirically-observed distribution of energy relative to the true underlying distribution. By expressing a
path distribution in joint image and color space, we show how outliers can be characterized by their density across
the set of all nearby paths in this space. We show that removing these outliers leads to significant improvements in
rendering quality.

(a) (b) (c) (d)

Original Renderings Renderings after Outlier Rejection, k = 50

Figure 1: The standard linear reconstruction of these two renderings leads to significant peaks of noise, a result of outlying
samples. We propose a method to identify and remove these outliers, leading to a significant reduction in perceptual noise.
Importantly, just the noise samples are targeted by the filtering, while other salient features are left unmodified.

1. Introduction

When simulating light transport using Monte Carlo methods
such as path tracing [Kaj86], finite sampling rates produce
the familiar noise artifacts as seen in Figures 1a and 1b.
We draw attention to two distinct phenomena of noise: the
subtle but globally-distributed high-frequency noise result-
ing from variance between correlated estimators, as well has
the highly-localized, distinctive “speckling” resulting from
statistical outliers. These outliers result from low-probability

yet high-energy light paths; their error is compounded by im-
portance sampling, which is otherwise an effective method
to reduce noise. By removing these outliers in a principled
manner, we significantly decrease the perceptual error, and
subsequently make the task of smoothing inter-pixel vari-
ance amenable to existing filtering methods. Subsequent to
outlier rejection and filtering, the same sampling rate results
in significantly more plausible renderings, as shown in the
two images on the right. The notion of plausibility is key: the
filtered renderings are biased, but acceptable to the eye and
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consistent with the known data, in contrast with the unbiased
renderings which contain unacceptable perceptual defects.

This type of peaked noise is highly scene-dependent. In
Figure 2 we show a rendering of a scene in which the
specular surfaces in Figure 1a are made Lambertian. Both
have been rendered with the same number of samples. The
specular surfaces, however, induce a significant increase in
noise. In particular, the small percentage of paths that un-
dergo specular reflection towards a light have significantly

Figure 2: All-diffuse version of Fig-
ure 1a. Note the absence of peaked
noise.

higher energy than
diffuse reflection
paths, resulting in
high variance. This
is not dissimilar to
the situation fre-
quently encountered
in direct lighting:
the energetic paths
occupy only a small
percentage of total
paths. However,
since the distribu-
tion of light sources
is known a priori,
this information
can be used to reduce variance through the method of
importance sampling. Samples are disproportionately drawn
in directions according to their known energy; resulting in
most samples making an equal contribution (after dividing
their energy by their probability of being selected), and thus
reducing variance. Similar high-variance integrands result
from peaks in the BRDF, in addition to those in incident
illumination, as with highly specular reflectance. Multiple
importance sampling [VG95] can combine multiple such
sources of a priori information to reduce noise.

So long as low-likelihood events can be expected (such as
the specular peak of a shiny BRDF) this can be accounted
for using multiple importance sampling. The problem arises
when the empirical distribution of energy differs widely
from the expected distribution (i.e. the one from which sam-
ples are drawn). In particular, as indirect illumination is not
known in advance—it is the quantity which we are using
path tracing to compute—it is accordingly more difficult to
compensate for variance. In fact, importance sampling can
compound the problem of outliers. When a region with low
expected energy density is sampled accordingly, importance
sampling will weight such values higher to produce an un-
biased estimator. However, when such samples in fact have
high energy, this produces a significantly larger value. Tech-
niques including defensive importance sampling [Hes95]
and others [OZ00] have been developed in response to this
phenomenon.

We term such samples as outliers. The speckling that re-
sults from outliers is a common effect in rendering that has

frequently been commented on in the related literature. See
for example the discussion of exactly this point in several
general introductions to rendering; see, e.g. [Jen01b, Figure
9.1, Pg. 139], and note the similar artifacts in the close-ups
in [PH04, Pg. 669]. We propose a definition of such outliers
that allows them to be identified and removed, significantly
decreasing noise.

One may employ image-space filters designed to re-
move noise, such as the median filter and the bilateral fil-

Figure 3: Median Filter in image-
space, which performs poorly due to
loss of spatial detail.

er [TM98]. The
non-linear median
filter in particular
has often been
recommended for
removing the sort
of speckled noise
as often seen in
Monte Carlo ren-
derings [Jen01b].
However, because
image-space filters
act solely on re-
constructed pixels,
significant data
have already been

lost by combining samples, and the existing data have been
corrupted by outliers. For example, application of an image-
space median filter to the example in Figure 1a results in
Figure 3. In many regions of the image, enough pixels have
been corrupted by outliers with the result that an accurate
approximation of the original cannot be determined. Bilat-
eral filtering performs worse; the range term preserves the
noise, rather than discarding it. For example, Figure 6a is
bilaterally filtered to produce (b), while applying our outlier
filter produces (c). While bilateral filtering has removed
much of the noise artifacts, many of the speckling artifacts
remain; note the side of the knight, as well as the light-
colored floor tiles to its left. In addition, pixels on the edge
of a high-frequency feature in the underlying scene, such
as at an occlusion or texture boundary, are poorly resolved
(note the second blowup). These artifacts remain despite a
significant range kernel width that is high enough to cause
perceptible color banding (note knight’s face in the first
blowup, and the right-foreground rook). Compare these to
(c), which cleanly removes speckling by approximating
the density of samples of the rendering equation, in joint
image-color space. By assuming that samples in low-density
regions are outliers, and rejecting them, we produce a result
that leaves only low-level noise, which is subsequently
removed using a narrower bilateral filter in (d).

2. Background

In contrast to methods such as importance sampling, other
filtering-based methods use the values of the evaluated sam-
ples to reduce noise by using an alternate reconstruction
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method for the final image pixels. The common approach
to reconstruction of an image I(x) applies a linear filter W
(representing the response function of an image sensor) to
the continuous light transport equation

I(x) = W ∗ L = lim
n→∞

1
C

n

∑
i

W (||x− xi||)L(xi) . (1)

In words, the pixel I(x) is a weighted mean of points L(xi)
on the image plane, where the weight W is determined en-
tirely by the distance between x and xi, and is independent
of the radiance L. Being linear in L, any sample can have an
unbounded influence on I by increasing its value; a single
unrepresentative sample, when using a finite sampling rate,
can significantly affect the reconstructed pixel value.

The percentage of values that, if modified, can force an
arbitrary change in the estimate is known as the breakdown
point [HRRS86]. As an estimator, the sample mean has a
breakdown point of 0, but is only one example of an estima-
tor for a location parameter; a value that gives the translation
of a statistical distribution (see [Tuk77] for an overview).
Alternate estimators have higher breakdown points. The me-
dian is an example of a commonly used resistant estimator;
it has a breakdown point of 50%, that is, the estimate is re-
sistant to arbitrary error until half of the data samples are
corrupted. However, while the median has a high breakdown
point, it has poor efficiency, measured as the variance of the
estimator relative to the mean estimator for a normal distri-
bution. The practical effect of this is shown in Figure 5a.
While the outlier noise is removed, the transitions in smooth
regions are made sharp, and the total level of energy in cer-
tain regions, such as the ceiling, is significantly reduced.

A generalization of both the median and the mean is the α-
trimmed mean, which has been previously proposed as a ro-
bust filtering method for reconstruction in rendering [LR90].
For a value of α ∈ [0, .5), the upper and lower α order statis-
tics of samples are discarded, and the location parameter
estimated as the mean of the remaining samples. Note that
the median is equivalent to the 0.5-trimmed mean. While the
breakdown point is reduced from 50% to α, efficiency is also
increased; as shown in Figure 5b, the 10%-trimmed mean
significantly reduces variance in transition regions as com-
pared to the mean, while continuing to remove noise. How-
ever, the energy levels of the ceiling and specular highlights
are reduced, which continues to differ as compared to the
reference even for a smaller α of 1% (Figure 5c), at which
point noise from outliers becomes noticeable. Furthermore,
the trimmed-mean estimates have an absolute error compa-
rable to or worse than the noisy original, which differs from
the reference by an RMS error of .0519. In contrast, we will
see that our method performs better both quantitatively (.041
RMS error) and perceptually.

This problem can be characterized as the effect of het-
eroskedastic data, in which the variance is non-constant
across the image plane. As a result, a single choice of α

is inappropriate across the entire image. A potential solu-

(a) Original (b) Our Method (c) 5% Trimmed

Figure 4: Multi-modal Distributions: In this scene with two
lights, the presence of specular objects cause outliers result-
ing in spiked noise. While a trimmed mean will reject these
outliers, samples from the (significantly smaller and more
intense) blue light are rejected as well. Our method rejects
only the clear outliers, viewing the blue light samples as con-
sistent with the data as a whole.

tion is to first estimate α for each pixel, but this adds an
additional level of complication. Other methods, such as
the anisotropic diffusion filter [McC99] and the non-linear
energy-preserving filter [RW94] attempt to adapt locally to
the amount of noise in each region, and spread the excess
energy out to neighboring pixels.

What these methods do not address, however, is the larger
problem of multimodal data. Estimators of location parame-
ters, by their nature, find a single mode; the empirical distri-
butions encountered in computer graphics have many modes
of energy, induced by multiple lights (or partial occlusion
of a single light), multiple modes of a BRDF, indirect il-
lumination, and so on. Take for example the scene shown in
Figure 4. While a trimmed mean removes the speckled noise,
it also causes a significant shift in color, as rays from the
smaller (but more powerful) blue light are rejected as outliers
to the larger yellow light. Our method, presented in the next
section, can remove noise while preserving coloration.

3. Algorithm Description

Our algorithm operates in the multidimensional space con-
sisting of both image space coordinates (independent vari-
ables) and color coordinates (dependent variables) and con-
siders the density of each sample in this joint space, its joint
density. The algorithm rejects samples with low joint density
as outliers. We hence term this as a path-density filter.

Note that the joint image and intensity space bears similar-
ities to the bilateral grid [CPD07], which regularly samples
this joint space to accelerate edge-aware image processing.
In our work, however, we use the joint domain to classify
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(a) Median (b) 10% Trimmed Mean (c) 1% Trimmed Mean (d) Reference
.093 RMS Error .072 RMS Error .051 RMS Error

Figure 5: Alpha-trimmed Means: Previous methods for outlier rejection using alpha-trimmed means remove noise at the cost
of significant decrease in total energy (note especially the roof and specular highlights compared to the reference) and also in
adding sharpness into previously smooth transitions (see the soft shadows). As a result, these reconstructions have significant
root-mean-squared (RMS) error compared to the reference (computed with 1024 samples/pixel) that does not improve on the
.0519 error of the noisy original (Figure 1a). Our method (Figure 1c) removes noise while maintaining .041 RMS error.

(a) Original, 25m samples

(d) Combined Outlier/Bilateral Filter, =3σc(b) Image-space Bilateral Filter, 10σ =c

(c) Sample-space Outlier Filtering, k=50

(e) Image-space Bilateral Filter, 5m samples, σ =c 10 (f) Combined Outlier/Bilateral Filter, 5m samples, σ =10
Rendering Time Approximatly 25% of (a)

c

Figure 6: Comparison with Bilateral Filtering. For a noisy rendering of the Chessboard scene with 25M samples (a), a direct
application of image-space bilateral filtering removes low-intensity noise but specifically preserves spike noise, even with a
relatively large σc (b). In contrast, spike noise is removed by application of the sample-space outlier filter (c), producing a
result that is amenable to removal of noise through subsequent bilateral filtering (d). At lower sample rates, the contrast is even
more apparent: consider the significantly noisy bilateral filtered (e), with the result of combined outlier/bilateral filtering (f) for
5M samples. The reduction in noise comes at the cost of bias (reduced energy in noisy areas); this has been corrected in the
filtered images by boosting brightness by 20%.
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(a) Original Noisy Image

(b) Sample x-location (c) Joint Density
vs. intensity

Figure 5: Joint Density Visualization. Shown is a slice of
the noisy input image (a, indicated by red line) where sam-
ples have been plotted on a graph of their x-component ver-
sus intensity (b, note that red, green and blue color compo-
nents are plotted separately). Outliers are characterized by
low sampling density in the joint space, rather than by ac-
tual their values. By computing density explicitly (c, colors
indicate lines of equal density) we can identify and exclude
these samples from image reconstruction (Figure 1c).

irregular samples before image formation. In that sense, our
method is also related to multi-dimensional adaptive sam-
pling [HJW∗08], where an irregular spatio-temporal sam-
pling space is used to reconstruct features in joint sampling
space. In contrast, our analysis focuses on the concept of
outliers, which is possible by including the color domain.

To motivate our method, Figure 5a shows a close-up of
the noisy image previously shown, where a single line of
samples (corresponding to those along the red line) has been
plotted independently in Figure 5b. The samples are plotted
as image x-coordinate vs. radiance (with independent red,
green, and blue channels overlaid). One can see clear out-
liers in the plot, which correspond to the sharp noise peaks
seen in the reconstruction. Note how the density of samples
is important for identification of outliers: similar to outliers,
specular highlights peak in magnitude, but are confirmed by
high density. In overview, our algorithm is as follows:

1. Initialize space-partitioning tree T and image I

2. For each Monte Carlo–rendered sample x:

a. Use T to find the k nearest neighbors in joint image-
color space

b. Compute σ , the average distance to neighbors

c. If σ < 1, then splat x into I

d. Otherwise, add x to T

3. For each remaining x ∈ T , repeat Steps 2a–2c.

We trace paths through the scene using standard meth-
ods. For each sample x we use a space-partitioning tree to

find the k-nearest neighbors, where k is a user-specified pa-
rameter. As a measure of local density σ , we compute the
mean absolute distance from x to its k-nearest neighbors. As
the sampling rate increases, the neighbors of x increasingly
converge to x itself, and σ approaches 0. If σ is large, x is
considered an outlier; σ thereby measures the quality of an
individual sample, as opposed to pixel variance, which mea-
sures the quality of an entire pixel. Note that our fixed choice
of 1 as a threshold value for σ does not lose generality, as a
varying threshold would be equivalent to scaling the weight
factors of the distance metric.

Non-outliers are composited into the output image as
usual. Outliers are not composited into the image, but stored
in the space-partitioning tree. At first, all samples will be
outliers, and will be added to the tree. However, as the num-
ber of samples increases, σ for new samples will tend to
decrease. Once an area in joint image-color space has a high
density of samples, additional samples will not be stored.

After rendering is finished, we perform a final pass
through the samples in the tree to determine if any of them,
given the addition of later samples, now has a value of σ

that would classify them as a non-outlier. If so, they are also
splatted into the image. (Note that for large sample counts,
the relatively small number of samples remaining in the tree
will have an insignificant effect on the final image).

Figure 5c displays a visualization of the density function
of the samples previously shown. Distinct colors represent
isolines of equal density. Note that the outliers are located in
the low-density region; rejection of all points with low den-
sities removes the outliers and their associated noise (while
preserving the higher-density features such as the specular
peak). This produces the rendering originally shown in Fig-
ure 1c. Figure 6 shows the average σ in our test scenes.

Choosing Neighborhood Size. The choice of the param-
eter k acts as a smoothing parameter. Larger values of k
require samples to have stronger corroboration by its neigh-
bors before being accepted, leading to a removal of samples
with low confidence. We demonstrate this in Figure 7. Note
that as k increases, the noise in the image decreases.

Figure 6: Mean Density Per Pixel The images visualize the
density by displaying mean σ at each pixel, color-mapped
such that blue is highest and red is lowest. Note that areas
such as the roof in the left image (which is lit entirely by in-
direct illumination) and shadow penumbrae in both images
have large σ compared to their surroundings.
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Scene Killeroo Sponza Chess
Samples 1M 5M 25M 1M 5M 25M 1M 5M 25M

Standard Rendering 21 sec 39 200 9 32 160 25 120 520
Filtered Rendering, k = 10 23 sec / 26k 47 / 30k 220 / 37k 10 / 58k 47 / 67k 200 / 89k 26 / 54k 140 / 83k 610 / 120k

k = 50 25 sec / 110k 61 / 117k 260 / 130k 13 / 150k 61 / 220k 270 / 300k 32 / 160k 140 / 250k 690 / 360k
k = 200 – 62 / 370k 280 / 410k – 68 / 560k 270 / 830k – 160 / 640k 720 / 940k

Table 1: Running times and storage costs for rendering and density filtering, for varying scenes, sampling rates, and filtering parameters;
times over 100 seconds are rounded to the nearest ten seconds. For each filtered result, we show both the total time spent on rendering with
filtering, and the number of samples stored in the space-partitioning tree. Time complexity is near-linear with respect to sample size, sublinear
with increasing k, and correlated to scene lighting complexity – the area-light Killeroo and Sponza scenes have similar filtering times, both less
than that of the environment-light Chess scene. Storage costs are near-linear with k, and roughly logarithmic with total samples. Numbers are
given for an 8-thread 2.67GHz Intel Core i7 CPU, with 16GB memory. The algorithm scales nearly linearly with increasing number of cores.

(a) Noisy Original

(b) Low Threshold, k = 10

(c) High Threshold, k = 50

Figure 7: Choosing neighborhood size. We show the Sponza
atrium using varying neighborhood sizes. As k is increased,
the confidence required to retain a sample also increases.
With fewer low-confidence samples in the reconstruction,
noise is removed from the image, note especially the glossy
archways. The k parameter allows a tradeoff between noise
and bias; by increasing k to 50, additional noise is removed,
at the cost of slight bias in the illumination. This bias is ex-
pressed by the removal of lower-confidence lighting features.

Distance Metric. For our purpose, distances between two
points is defined as the sum of Euclidean distance between
their image space coordinates, and their color coordinates in
CIELAB space,

d(x, y) =

√
d2(ximage, yimage)

σ
2
image

+
d2(xcolor, ycolor)

σ
2
color

. (2)

The image-space distance weight is set to approximate the
sensor response W (i.e. if W is a Gaussian kernel with σ = 3
pixels, the image-space distance weight σimage = 3). Color
distance weight is a user parameter; we have fixed it to 100.

CIELAB distance is chosen for its perceptual basis, but other
color spaces, such as CIE1934 (XYZ) and sRGB are usable
for this purpose. We find that it is useful to simplify param-
eter selection by fixing the weight applied to color distance,
and instead use k as the quality-control parameter.

4. Results

As shown in Table 1, our method adds only a slight over-
head to standard path tracing. For values of k in the normal
range of 10 to 50, filtering adds a time overhead of around
20% to 40%. However, it provides a significantly greater im-
provement in rendering convergence than would have been
achieved if this additional time had been spent rendering ad-
ditional samples. Consider Figure 6. Subfigure (f) rendered
using our method and only 5M samples displays less noise
than (a), which is rendered using 25M samples. The time
spent to render (f) is about 25% of that spent on (a).

Our filtering method is also memory-efficient. By stor-
ing only outlier samples in the space-partitioning tree, our
method produces an adaptive representation of density. Stor-
age is most strongly correlated with scene complexity, rather
that the total number of samples. Increase in storage is
roughly logarithmic with increasing samples. For example,
in the Sponza scene with 1M total samples, our algorithm
stores 58K samples in the tree; at 25M total samples, this
only increases by 53% to 89K samples stored. Each sample
is approximately 6 floating point values (X and Y image po-
sition, time and color), plus several pointers to maintain the
tree. Therefore, additional storage cost is negligible.

Our method generalizes to animations by recording the
time value of each sample, and using an appropriately
weighted distance term. Analogous to the screen-distance
term, the time-distance weight is set proportional to the time
reconstruction kernel width, which in our renderings is 2
frames. Outlier noise is particularly noticeable in anima-
tions, as they results in speckles that come into view for only
a single frame. In the accompanying video, we demonstrate
the use of our method on an animation through the Sponza
scene, previously shown in Figure 7. The most noticeable
outlier noise is eliminated, and the resulting images are a
significant improvement.
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5. Discussion

Our method invites comparisons to photon mapping, another
biased method for noise reduction that relies on density esti-
mation [Jen01a]. Photon mapping does not suffer from the
spiked noise artifacts of path tracing that our method ad-
dresses. However, it is to path tracing’s advantage that it
is the more general mechanism, with fewer parameters to
control, and is easier to implement. Therefore, while photon
mapping converges quickly for many scenes, our method has
the benefit of being a very general, yet very simple, improve-
ment of a fundamental rendering technique that performs
favorably for a wide range of scenes.

As future work, it may be possible to apply joint-space
outlier rejection to photon mapping. As typically imple-
mented, photon mapping casts photons into the scene from
light sources, and uses the stored photons to compute the
spatial flux density at each rendered location. Analogous to
our method, one could instead consider the density in joint
spatial-power space. One could then reject photons that have
low joint density, potentially reducing rendering artifacts,
such as splotching, due to outlier photons.

Moreover, Jensen notes the importance of “ensur[ing] that
the stored photons have approximately the same power. This
is important for good quality of the radiance estimate. . . .”
[Jen01a, Pg. 61]. Therefore, he employs methods such as
Russian roulette to avoid disparities in photon energy. It is
possible, however, that one could additionally employ outlier
rejection methods similar to the one presented here, allowing
for wide ranges of photon energy without reduced quality.

In conclusion, we have presented a filtering method by
which objects with complex, glossy reflectance can be used
in a scene without penalty of introduced noise in other ob-
jects. Instead, the resulting noise is withheld from the scene
until a sampling rate has been achieved that allows the ren-
dering of lighting phenomena without noise. Importantly,
basic lighting features such as direct illumination can be
computed relatively quickly, while the rendering filter iso-
lates the low-noise direct illumination from corruption from
high-noise indirect illumination. It is intended that this will
allow for the use of progressive level-of-detail in realistic
renderings, which itself will hopefully lead to greater adap-
tation of physically-based light transport methods and ray
tracing to supplant the heuristic methods most commonly in
place today.
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