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Figure 1: Appearance manipulation of a single photograph (top images) when using off-the-shelf software like Photoshop directly (left arrow)
and when using the same in combination with our new layering (right arrow). For the car example, the image was decomposed into layers
(albedo, irradiance, specular, and ambient occlusion), which were then manipulated individually: specular highlights were strengthened and
blurred; irradiance and ambient occlusion were darkened and have added contrast; the albedo color was changed. While the image generated
without our decomposition took much more effort (selections, adjustments with curves, and feathered image areas), the result is still inferior.
For the statue example, a different decomposition splitting the original image into light directions was used. The light coming from the left
was changed to become more blue, while light coming from the right was changed to become more red. A similar effect is hard to achieve in
Photoshop even after one order of magnitude more effort. (Please try the edits yourself using the supplementary psd files.)

Abstract
Photographers routinely compose multiple manipulated photos of the same scene into a single image, producing a fidelity
difficult to achieve using any individual photo. Alternately, 3D artists set up rendering systems to produce layered images to
isolate individual aspects of the light transport, which are composed into the final result in post-production. Regrettably, these
approaches either take considerable time and effort to capture, or remain limited to synthetic scenes. In this paper, we suggest a
method to decompose a single image into multiple layers that approximates effects such as shadow, diffuse illumination, albedo,
and specular shading. To this end, we extend the idea of intrinsic images along two axes: first, by complementing shading
and reflectance with specularity and occlusion, and second, by introducing directional dependence. We do so by training a
convolutional neural network (CNN) with synthetic data. Such decompositions can then be manipulated in any off-the-shelf image
manipulation software and composited back. We demonstrate the effectiveness of our decomposition on synthetic (i. e., rendered)
and real data (i. e., photographs), and use them for photo manipulations, which are otherwise impossible to perform based on
single images. We provide comparisons with state-of-the-art methods and also evaluate the quality of our decompositions via a
user study measuring the effectiveness of the resultant photo retouching setup. Supplementary material and code are available
for research use at geometry.cs.ucl.ac.uk/projects/2017/layered-retouching.

1. Introduction

Professional photographers regularly compose multiple photos of
the same scene into one image, giving themselves more flexibility
and artistic freedom than achievable by capturing a single photo.
They do so, by ‘decomposing’ the scene into individual layers,
e. g., by changing the scenes physical illumination, manipulating
the individual layers (e. g., typically using a software such as Adobe
Photoshop), and then composing them into a single image.

A typical manipulation is changing a layer’s transparency (or
‘weight’): if a layer holds illumination from a specific light direction,

this is a direct and easy way to control illumination. Other editing
operations include adjustment of hues, blur, sharpening, etc. These
operations are applied selectively to some layers, leaving the others
unaffected. While the results produced by layered editing could, in
principle, also be produced by editing without layers, the separation
allows artists, and even novice users, to direct their edits to specific
aspects of an image without the need for tediously selecting image
regions based on color or shape, resulting in higher efficacy. The
key to success is to have a plausible and organized separation into
layers available.
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Unfortunately, acquiring layers requires either taking multiple
photos [CCD03] or to use (layered) rendering [Hec90]. The first
option is to capture photos in a studio setup requiring significant
setup effort but producing realistic inputs. The other option is to
use layered rendering, which is relatively straight-forward and well
supported, but the results can be limited in realism.

In this work, we set out to devise a system that combines the
strength of both approaches: the ability to directly work on real
photos, combined with a separation into layers. Starting from a
single photograph, our system produces a decomposition into layers,
which can then be individually manipulated and recombined into
the desired image using off-the-shelf image manipulation software.
Fig. 1 shows two examples, one where specular highlights and
albedo were adjusted on the input car image, while on the other
directional light-based manipulations were achieved on single input
photographs. (Please refer to the supplementary for recorded edit
sessions and accompanying PSD files.)

While many decompositions are possible, we suggest a specific
layering model that works along two axes: intrinsic features and
direction. This is inspired by how many artists as well as practical
contemporary rendering systems (e. g., in interactive applications
such as computer games) work: first, decomposition into ambient
occlusion, diffuse illumination, albedo, and specular shading and
second, a decomposition into light directions. Both axes are op-
tional but can be seamlessly combined. Note that this model is not
physical. However, it is simple and intuitive for artists and, as we
will show, its inverse model is effectively learnable. To invert this
model, we employ a deep convolutional neural network (CNN) that
is trained using synthetic (rendered) data, for which the ground truth
decomposition of a photo into layers is known. While CNNs have
recently been used for intrinsic decompositions such as reflectance
and shading, we address the novel problem of refined decomposi-
tion into ambient occlusion and specular as well as into directions,
which is critical for the layered image manipulation workflow. Our
contributions are:

1. a workflow, in which a single input photo is automatically decom-
posed into layered components that are suited for post-capture
appearance manipulation within standard image editing software;

2. two plausible appearance decompositions, particularly suited for
plausible appearance editing: i) advanced intrinsics, including
specular and ambient occlusion and ii) direction; and

3. a flexible, CNN-based approach to obtain a given type of decom-
position, leveraging the state-of-the-art in deep learning.

We evaluate our approach by demonstrating non-trivial appearance
edits based on our decompositions and a preliminary user study.
We further demonstrate the efficacy of our CNN architecture by
applying it to the well-established intrinsic images problem, where
it compares favourably to the state-of-the-art methods.

2. Previous Work

Combining multiple photos (also referred to as a “stack” [CCD03])
of a scene where one aspect has changed in each layer is routinely
used in computer graphics. For example, NVIDIA IRay actively
supports rendered LPE layers (light path expressions [Hec90]) to
be individually edited to simplify post-processing towards artistic

effects without resorting to solving the inverse rendering problem.
One aspect to change is illumination, such as flash-no-flash photog-
raphy [ED04] or exposure levels [MKVR09]. More advanced effect
involve direction of light [ALK∗03, RBD06, FAR07], eventually
resulting in a more sophisticated user interface [BPB13]. All these
approaches require specialized capture to gather multiple images
captured by making invasive changes to the scene, limiting their use
in practice to change an image post-capture. On-line video and photo
communities hold many examples of DIY instructions to setup such
studio configurations.

For single images, a more classic approach is to perform in-
trinsic decomposition into shading (irradiance) and diffuse re-
flectance (albedo) [BT78, GMLMG12, BBS14], possibly supported
by a dedicated UI for images [BPD09, BBPD12], using anno-
tated data [BBS14, ZKE15, ZIKF15], or videos [BST∗14, YGL∗14].
Recently, CNNs have been successfully applied to this task pro-
ducing state-of-the-art results [NMY15, SBD15]. For CNNs, a
recent idea is to combine estimation of intrinsic properties and
depth [SBD15, KPSL16]. We will jointly infer intrinsic properties
and normals to allow for a directional illumination decomposition.
Also the relation between intrinsic images and filter is receiving con-
siderable attention [BHY15, FWHC17]. We also use a data-driven
CNN-based approach to go beyond classic intrinsic image decom-
position layers with further separation into occlusion and specular
components, as well as directions, that are routinely used in layered
image editing (see Sec. 4 and supplementary materials).

In other related efforts, researchers have looked into factorizing
components, such as specular [TNI04, MZBK06] from single im-
ages, or ambient occlusion (AO) from single [YJL∗15] or multiple
captures [HWBS13]. We show that our approach can solve this
problem at a comparable quality, but requires only a single photo
and in combination yields further separation of diffuse shading and
albedo without requiring a specialized method.

Despite the advances in recovering reflectance (e. g., with two
captures and a stationarity assumption [AWL15], or with dedicated
UIs [DTPG11]), illumination (e. g., Lalonde et al. [LEN09] estimate
sky environment maps and Rematas et al. [RRF∗16] reflectance
maps) and CNN-based depth [EPF14] from photographs, no system
doing a practical joint decomposition is known. Most relevant to
our effort, is SIRFS [BM15] that build data-driven priors for shape,
reflectance, illumination, and use them in an optimization setup to
recover the most likely shape, reflectance, and illumination under
these priors (see Sec. 4 for explicit comparison).

In the context of image manipulations, specialized solutions exist:
Oh et al. [OCDD01] represent a scene as a layered collection of color
and depth to enable distortion-free copying of parts of a photograph,
and allow discounting effect of illumination on uniformly textured
areas using bilateral filtering; Khan et al. [KRFB06] enable automat-
ically replacing one material with another (e. g., increase/decrease
specularity, transparency, etc.) starting from a single high dynamic
range image by exploiting our ‘blindness’ to certain physical in-
accuracies; Caroll et al. [CRA11] achieve consistent manipulation
of inter-reflections; or the system of Karsch et al. [KHFH11] that
combines many of the above towards compelling image synthesis.

Splitting into light path layers is typical in rendering inspired
by the classic light path notation [Hec90]. In this work, different
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from Heckbbert’s physical E(S|D)∗L formalism, we use a more edit-
friendly factorization into ambient occlusion, diffuse light, diffuse
albedo, and specular, instead of separating direct and indirect effects.
While all the above works on photos, it was acknowledged that
rendering beyond the laws of physics can be useful to achieve differ-
ent artistic goals [TABI07, VPB∗09, RTD∗10, RLMB∗14, DDTP15,
SPN∗15]. Our approach naturally supports this option, allowing
users to freely change layers, using any image-level software of
their choice, also beyond what is physically correct. For example,
the StyLit system proposed by Fišser et al. [FJL∗16] correlates artis-
tic style with light transport expressions, but requires pixels in the
image to be labeled with light path information, e. g., by rendering
and aligning. Hence, it can take our factorized output to stylize
single photographs without being restricted to rendered content.

3. Editable Layers From Single Photographs

Our approach has two main parts: an imaging model that describes
a decomposition of a single photo into layers for individual editing
and a method to perform this decomposition.

Model. The imaging model (Sec. 3.1) is motivated by the require-
ments of a typical layered workflow (Sec. 3.4): The layers have to
be intuitive, they have to be independent, they should only use blend
modes available in a (linear) off-the-shelf image editing software
and they should be positive and low-dynamic-range (LDR). This
motivates a model that can decompose along two axes: intrinsics and
directionality. These axes can be combined and use a new directional
basis we propose.

Decomposition. The decomposition has two main steps: (i) produc-
ing training data (Sec. 3.2) and (ii) a convolutional neural network
to decompose single images into editable layers (Sec. 3.3). The
training data (Sec. 3.2) is produced by rendering a large number
of 3D scenes into image tuples, where the first is the composed
image, while the other images are the layers. This step needs to be
performed only once and the training data will be made available
upon publication. The decomposition (Sec. 3.3) is done using a
CNN that consumes a photo and outputs all its layers. This CNN
is trained using the (training) data from the previous step. We se-
lected a convolution-deconvolution architecture that is only to be
trained once, can be executed efficiently on new input images, and
its definition will be made publicly available upon publication.

3.1. Model

We propose an image formation model that can decompose the
image along one or two independent axis: intrinsic features or direc-
tionality (Fig. 2).

Non-directional model. We model the color C of a pixel as

C = Oa(ρ ·E +S), (1)

where Oa ∈ [0,1] ∈ R denotes the ambient occlusion, which is the
fraction of directions in the upper hemisphere that is blocked from
the light; the variable ρ ∈ [0,1]3 ∈ R3 describes the diffuse albedo,
i. e., the intrinsic color of the surface itself; the variable E ∈ [0,1]3 ∈
R3 denotes the diffuse illumination (irradiance), i. e., the color of
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Figure 2: The components of our two imaging models. The first row
is the intrinsic axis, the second row the directional axis, and the
third row shows how one directional element can subsequently be
also decomposed into its intrinsics.

the total light received; and finally, S ∈ [0,1]3 ∈ R3 is the specular
shading in units of radiance, where we do not separate between the
reflectance and the illumination (see Fig. 2 top row).

This model is a generalization of typical intrinsic im-
ages [BKPB17], which only models shading and reflectance, to
include specular and occlusion. While in principle occlusion acts dif-
ferently on diffuse and specular components, we follow Kozlowski
and Kautz [KK07], who show that jointly attenuating diffuse and
specular reflectance by the same occlusion term is a good approxi-
mation under natural lighting, by using Oa as a joint multiplier of
ρ ·E and S, thus keeping the user-visible reflectance components to
a minimum.

In summary, this decomposition produces four layers from each
input image that can be combined with simple blending operations
in typical image retouching software.

Directional model. The directional model is a generalization of
the above. We express pixel color as a generalized intrinsic image
as before, but with diffuse illumination depending on the surface
normal, and specular shading depending on the reflection vector:

C = Oa

N

∑
i=1

(ρ ·bi(n)E +bi(r)S) , (2)

where bi ∈ S2 → R3, i ∈ 1 . . .N, are basis functions of an N-
dimensional lighting basis, parameterized by the surface orientation
n, and the reflected orientation r := 2〈v,n〉n−v, respectively. All
directions are in view space, so assuming a distant viewer the view
direction is v≡ (0,0,1)> by construction.

Especially for diffuse lighting, a commonly used lighting ba-
sis would be first-order spherical harmonics (SH), i. e., (bSH

i ) =

(Y 0
0 ,Y

−1
1 ,Y 0

1 ,Y
1
1 ). That basis is shown to capture diffuse reflectance

at high accuracy [RH01b]; however, as we aim for a decomposition
amenable to be used in traditional photo processing software, which
typically quantizes and clamps any layer calculations to [0,1], the
negative lobes of SH would be lost when stored in an image layers.
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A common positive-only reparameterization would use the six gen-
erator functions,

b̃SH
1/2 =

1/2± 1/2Y−1
1 ,

b̃SH
3/4 =

1/2± 1/2Y 0
1 ,

b̃SH
5/6 =

1/2± 1/2Y 1
1 , (3)

with Y 0
0 = b̃SH

1 + b̃SH
2 , Y−1

1 = b̃SH
2 − b̃SH

1 , Y 0
1 = b̃SH

4 − b̃SH
3 , and

Y 1
1 = b̃SH

6 − b̃SH
5 . Initial experiments with that lighting basis, how-

ever, showed that the necessary blending calculations between the
corresponding editing layers lead to excessive quantization in an
8-bit image processing workflow, and even using Photoshop’s 16-bit
mode mitigated the problem only partially. Moreover, direct editing
of the basis function images turned out unintuitive, because

1. the effect of editing pixels corresponding to negative SH contri-
butions is not easily evident to the user;

2. the strong overlap between basis functions makes it difficult to
apply desired edits for individual spatial directions only.

This led us to propose a sparser positive-only basis, where spatial
directions are mostly decoupled. After experimentation with various
bases, we settled on a normalized variant of b̃SH as:

bi(ω) = b̃SH
i (ω)p/

6

∑
j=1

b̃SH
j (ω)p

=

(
〈ω,ci〉+1

)p

∑
6
j=1
(
〈ω,c j〉+1

)p , (4)

using the dotproduct-based formulation of 1st-order SH, denoting
with ci the six main spatial directions; the normalization term en-
sures partition of unity, i. e., ∑

N
i bi(ω) = 1. Empirically, we found

p = 5 to offer the best compromise between separation of illumina-
tion functions and smoothness. A polar surface plot of the six basis
functions overlapping is shown in Figure 3.

Figure 3: Directional bases. Left: b̃SH
i , a positive-only reparame-

terization of the 1st-order SH basis exhibits strong overlap between
neighboring lobes (drawn as opaque surface plots), and with it
strong cross-talk of edits of the associated editing layers; Right:
our bi (Equation (4)) remains smooth while lobes are separated
much more strongly. Note that b̃SH

i has been uniformly rescaled to
be partition of unity; the difference in amplitude (see axis labels)
further documents the sparser energy distribution in our basis.

Using this basis, Equation (2) produces 14 layers from an input
image – where twelve are directionally-dependent and two are not (ρ
and Oa) – that can be combined using any compositing software. As

Image

Occlusion

Albedo

Irradiance

Specular

Figure 4: Samples from our set of synthetic training data.

shown in the second and third row of Fig. 2, the 14 output layers can
be either collapsed onto 6 directional layers or kept as a combination
of both intrinsic and directional decomposition.

3.2. Training Data

There are many values of Oa, E, ρ , and S to explain an observed
color C, so the decomposition is not unique. In the same way, many
normals are possible from a pixel. Inverting this mapping from
a single observation is likely to be impossible. At the same time,
humans have an intuition how to infer reflectance on familiar ob-
jects [KVDCL96]. One explanation can be that they rely on a context
x, on the spatial statistics of multiple observations C(x), such that a
decomposition into layers becomes possible. In other words, sim-
ply not all arrangements of decompositions are equally likely. As
described next, we employ a CNN to similarly learn such a decom-
position. Training data comprises of synthetic images that show a
random shape, with partially random reflectance shaded by random
environment map illumination.

Shape. Surface geometry consists of about 2,000 random instances
from ShapeNet [C∗15] coming from the top-level classes, selected
from ShapeNetCore semi-automatically. Specifically, ShapeNetCore
has 48 top-level classes among which we use 27. We discarded
classes that had either very few models or that were considered
uncommon (e. g., birdhouse). We then randomly sampled a tenth of
the total models from each class resulting in 1,930 models. These
models were also manually filtered to be free of meshing artifacts.
Shapes were rendered under random orientation while maintaining
the up direction intrinsic to each model.

Reflectance. Reflectance using the physically-corrected Phong
model [LW94] was sampled as follows: the diffuse colors come
directly from ShapeNet models. The specular component ks is as-
sumed to be a single color. A random decision is made if the material
is assumed to be electric or dielectric. If it is electric, we choose the
specular color to be the average color of the diffuse texture. Other-
wise, we choose it to be a uniform random grey value. Glossiness is
set as n = 3.010ξ , where ξ ∈U [0,1].

Illumination. Illumination is sampled from a set of 90 high-
dynamic-range (HDR) environment maps in resolution 512×256
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that have an uncalibrated absolute range of values but are represen-
tative for typical lighting settings: indoor, outdoor, as well as studio
lights. Illumination were randomly oriented around the vertical axis.

Rendering. After fixing shape, material, and illumination, we syn-
thesize a single image from a random view from a random angle
around the vertical axis. To produce C, we compute four individ-
ual components, that can be composed into Eq. 1 or further into
directions according to Eq. 2 as per-pixel normals are known at
render time. Due to the large number of training data required, we
use efficient, GPU-based rendering algorithms. The occlusion term
Oa is computed using screen-space occlusion [RGS09]. The diffuse
shading E is computed using pre-convolved irradiance environment
maps [RH01a]. Similarly, specular shading is the product of the
specular color ks selected according to the above protocol, and a
pre-convolved illumination map for gloss level n. No indirect illu-
mination or local interactions are rendered.

While this image synthesis is far from being physically accurate,
it can be produced easily, systematically and for a very large number
of images, making it suitable for learning the layer statistics. Overall
we produce 300,000 unique samples in a resolution of 256×256
(ca. 14 GB) in eight hours on a current PC with a higher-end GPU.
A fraction of the images totalling to about 30000 were withheld
to check for convergence (and detect over-fitting). We also used
dropout to prevent over-fitting.

Units. Care has to be taken in what color space learned and training
data is to be processed. As the illumination is HDR, the resulting
image is an HDR rendering. However, as our input images will be
LDR at deployment time, the HDR images need to be tone-mapped
to match their range. To this end, automatic exposure control is
used to map those values into the LDR range, by selecting the 0.95
luminance percentile of a random subset of the pixels and scale
all values such that this value maps to 1. The rendered result C is
stored after gamma-correction. All other components are stored in
physically linear units (γ = 1.0) and are processed in physically
linear units by the CNN and the end-application using the layers.
Doing the final gamma-correction will consequentially be up to the
application using the layers later on (as shown in our edit examples).

3.3. Learning a Decomposition

We perform decomposition using a CNN [LBBH98,KSH12] trained
using the data produced as described above. Input to the network is
a single image such as a photograph. Output for the non-directional
variant are five images (occlusion, diffuse illumination, albedo, spec-
ular shading, and normals), where occlusion is scalar and the oth-
ers are three-vector-valued. Note, that normals and intrinsic prop-
erties are estimated jointly, such as done before for albedo and
depth [SBD15, KPSL16]. The normals are not presented to the user,
but only used to perform the directional decomposition.

We have also experimented with letting the CNN directly compute
the directional decomposition, but found that having an explicit
decomposition using normal and reflected direction to be easier to
train and produce better results.

This design follows the convolution-deconvolution idea with
cross-links, resulting in a decoder-encoder scheme [RFB15]. The

network is fully-convolutional. We start at a resolution of 256×256
that is reduced down to 2×2 through stride-two convolutions. We
then perform two stride-one convolutions and increase the number
of feature layers in accordance to the required number of output lay-
ers (i. e., quadruple for the layers, while the whole step is skipped for
normal estimation). The deconvolution part of the network consists
of blocks performing a resize-convolution (upsampling followed by
a stride-one convolution), cross-linking and a stride-one convolution.
Every convolution in the network is followed by a ReLU [NH10]
non-linearity except for the last layer, for which a Sigmoid non-
linearity is used instead. This is done to normalize the output to the
range [0,1]. Images with an uneven aspect ratio will be appropriately
cropped and/or padded to be square with white pixels. All receptive
fields are 3×3 pixels in size except for the first and last two layers
that are 5×5. No filter weights are shared between layers. Overall,
this network has about 8.5 M trainable parameters.

For the loss function, we combine a per-layer L2 loss with a
novel three-fold recombination loss, that encourages the network
to produce combinations that result in the input image and fulfills
the following requirements: (i) the layers have to produce the input,
so C = Oa(E ·ρ +S); (ii) the components should explain the image
without AO, i. e., C/Oa = Eρ + S; and (iii) diffuse reflected light
should explain the image without AO and specular, so C/Oa−S =
Eρ . Note that if the network was able to always perform a perfect
decomposition, a single L2 loss alone would be sufficient. As it
makes errors in practice, the additional loss expressions bias those
errors to at least happen in such a way that the combined result
does not deviate as much from the input. All losses are in the same
RGB-difference range and are weighted equally.

In Tbl. 1, we numerically evaluate the recombination error (i.e.,
the differences between the original and recombined images) by
progressively adding each of the three additional losses to a standard
L2 loss. While a positive trend can be observed with the DSSIM
metric, these benefits are not as evident on the NRMSE metric.

Overall, the network is a rather standard modern design, but
trained to solve a novel task (layers) on novel kind of training
data (synthesized, directionally-dependant information). We used
TensorFlow [A∗15] for our implementation platform and each model
requires only several hours on a NVIDIA Titan X GPU with 12 GB
on-board RAM to train (both have been trained for 12 hours). We
used stochastic gradient descent to solve for the network, which we
ran for 6 epochs with batches of size 16. A more detailed description
of the network’s architecture can be found in the supplementary
materials.

Table 1: Comparing different steps of our recombination loss (rows)
in terms of two metrics (columns): DSSIM and NRMSE on our
validation set.

Loss NRMSE DSSIM

L2 0.2549 ± 0.0807 0.0234 ± 0.0129
L2 + (iii) 0.2598 ± 0.0833 0.0229 ± 0.0126

L2 + (iii) + (ii) 0.2588 ± 0.0799 0.0229 ± 0.0122
L2 + (iii) + (ii) + (i) 0.2460 ± 0.0787 0.0210 ± 0.0119
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Figure 5: Decomposition of input images into light layers. Please see “Decomposition” in Sec. 4.
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Figure 6: Decomposition of input images into the six directional layers for different objects. Please see “Decomposition” in Sec. 4.

3.4. Composition

For composition any arbitrary software that can handle layering,
such as GIMP, Adobe Photoshop, or Blender, can be used. Our
decomposition is so simple that it can be implemented using a basic
set of Photoshop layers of the appropriate additive and multiplica-
tive blend modes, followed by a final gamma mapping. The whole
setup process can easily be automated through the use of Photoshop
macros. The content is then ready to be manipulated with existing

tools with WYSIWYG feedback (please refer to the supplementary
for example PSD files).

The artist is free to make any local edits to any of the layers, which
usually leads to user-predictable results, owing to the successful
decoupling of appearance contributors. Note that we do not limit the
manipulation to producing a composition that is physically valid,
because this would be unduly limiting artistic expression at this part
of the pipeline [TABI07, RGS09, SPN∗15].
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Figure 7: Oa· (ρ· E + S) editing. RED CAR: specular highlights
were strengthened and blurred, while hue was adjusted. TOY ROBOT:
specular highlights were blurred, while preserving high frequency
details. SOLDIER STATUE: specular highlights were reduced, and
brightness of albedo enhanced. Dark regions were also made more
evident. Intuitively, in the single channel edit, the tasks clash against
each other. ORANGE CAR: specular highlights were boosted and
parts of the car directly lit from light sources were emphasized. BOY

STATUE: the appearance of the statue was adjusted to simulate
marble and copper, respectively. FRUITS: specular highlights were
boosted and given a blue tint. Dark regions were emphasized.

4. Results

We report results in form of typical decompositions on im-
ages, edits enabled by this decomposition, numeric evalu-
ation, and a preliminary user study. The full material with
many more decompositions, high-resolution images, videos,
and user study material are found in our supplementary at
geometry.cs.ucl.ac.uk/projects/2017/layered-
retouching.

Note that a segmentation of the object is always provided. Given
our context (product photography), where such a segmentation is
part of the standard workflow, we assume a user can easily provide a
mask, e.g., using GrabCut. In general, the feasibility of automatically
obtaining a mask is clear for product images using a monochromatic
background.

Decompositions. How well our network performs is best seen
when applying it to real images. Naturally, we do not know the
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Figure 8: Directional editing. GRAY CAR: light coming from the
right was emphasized. WOLVERINE STATUE: blue light sources on
the right and left sides of the statue were simulated. Differences with
single channel edits are best seen near the tights of the statue. RED

CAR: light coming mostly from the right was simulated. TEA SET:
this example uses our 14-way edit. The specular color of the light
was changed based on directionality (blue from the left, red from the
right). Note how the lidless teapot is fully blue in the single-channel
edit, as opposed to the edit using our decomposition, where red can
be seen on its right side. FRUITS: light coming from the bottom was
dimmed and light coming from the top was emphasized.

reference layer-decomposition or directional decomposition, so their
quality can only be judged qualitatively.

Representative results of decomposing images into appearance
layers are shown in Fig. 5. The real-world photographs shown rep-
resent a mix of natural and man-made objects, whose surface ap-
pearance ranges from mostly diffuse, to sheen, to mirror-like gloss,
featuring both uniform and structured diffuse albedo.

Overall, the decompositions turn out plausible and provide a clear
separation of independent aspects of appearance. That plausibility
is critical for successful editing sessions. Existing failure cases are
subtle: the tea set exhibits slight cross-talk from diffuse albedo into
the specular channel where the porcelain’s color blends into pale
green; equally, the subtle brown spots on the pear do not end up in
the albedo map but show as attenuations in the specular channel;
the mirror reflection of a table in the bowl of the food processor (far
right), which does not conform with our image formation model,
gets evenly distributed across all channels. Interestingly, very dark
areas, where an inherent ambiguity between low irradiance, low
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diffuse albedo, and high ambient occlusion exists, generally get
attributed to a combination of low albedo and irradiance, while am-
bient occlusion rather credibly remains limited to darkening around
strong apparent geometric features. Most importantly, however, we
observe that these types of failures are graceful enough to still allow
for meaningful edits on a layer-basis.

Directional decompositions are shown in Fig. 6. Their quality
largely depends on the quality of the normal map inferred from
the input images. We again show a range of materials and objects,
and most normal maps look plausible on first sight. Closer scrutiny
reveals instances where color or shading variations affect the normal
reconstruction, and little can be said about quantitative accuracy of
the normals. Nevertheless, given the ill-posedness of the task, we
argue that the normal quality is remarkable. This shows in largely
plausible directional lighting separations for each object. As we will
show below, this still proves sufficient for effective and intuitive
editing.

Edits. Typical edits are shown in Fig. 7 and the directional variant
in Fig. 8. Note that we support both global manipulations, such as
changing the weight of all values in a layer, and local manipulations,
such as blurring the highlights or albedo individually. We show a
range of edit examples achieved with and without our decomposition.
All edits were performed using Photoshop. Generally the effects
were much easier to obtain using our decomposition.

Classic intrinsic images [BKPB17] assume S to be zero (no spec-
ular) and combine our terms Oa and D, the occlusion and the diffuse
illumination, into a single “shading” term that is separated from the
reflectance ρ , i. e.,

C = Oa(ρ ·E +S)≈ Oa(ρ ·E +0) = Oa ·E︸ ︷︷ ︸
Shading E ′

·ρ. (5)

Similarly, specular separation [TNI04, ABC11], does not identify
occlusion and separates into a diffuse term D and a specular term S′:

C = Oa(ρ ·E +S)≈ Oa ·ρ ·E︸ ︷︷ ︸
Diffuse D

+ Oa ·S︸ ︷︷ ︸
Specular S′

. (6)

A comparison of our decomposition and typical approaches to
generate intrinsic images is shown in Fig. 9. In Table 4 we compare
against the same techniques but on our validation dataset. This test
dataset was generated using randomly selected ShapeNet models as
described before and was not available to our network at training
time. We see, that for product images, our approach can perform a
better separation into components than other published methods.

At N = 100 the std. error of the mean in SSIM units is in the
order of, e. g., 0.35/

√
100 = 0.03, that is, quite low, indicating that

even the 100 samples in our test dataset give a good estimate of a
methods effect, while still being able to compute the outcome with
slower methods.

User study. We have investigated how much the layered represen-
tation we suggest can facilitate appearance editing compared to
a non-layered representation. To this end, we have given subjects
(Ns = 8) tasks (Nt = 2) they had to complete in Photoshop. Subjects
reported had a general technical knowledge of image manipulation

Table 2: Comparing different methods (rows) in terms of two metrics
(columns): DSSIM and NRMSE on our validation set.

Layer Method NRMSE DSSIM

Albedo ρ IIW [BBS14] 0.484 ± 0.397 0.066 ± 0.040
SIRFS [BM15] 0.805 ± 0.819 0.066 ± 0.036

DI [NMY15] 0.598 ± 0.290 0.076 ± 0.038
Ours 0.322 ± 0.273 0.061 ± 0.035

Shading E ′ IIW [BBS14] 0.298 ± 0.162 0.053 ± 0.034
SIRFS [BM15] 0.302 ± 0.132 0.057 ± 0.037

DI [NMY15] 0.389 ± 0.134 0.065 ± 0.036
Ours 0.167 ± 0.079 0.045 ± 0.033

Specular S SRC [TI05] 2.100 ± 1.504 0.084 ± 0.039
Ours 0.535 ± 0.299 0.060 ± 0.032

Occlusion Oa Ours 0.098 ± 0.034 0.050 ± 0.031
Irradiance E Ours 0.158 ± 0.082 0.057 ± 0.036

in Photoshop. Tasks were given in written form. In one condition,
the images were split into layers, in the other they were not. The
order in which the tasks were performed was randomized. Subjects
were asked to perform the (Ns×Nt = 16) trials within 3 minutes
and to indicate when they were satisfied with the results. The first
task was to “strengthen all the specular highlights” of a car and to
“blur the specular highlights across the object to simulate a material
with lower glossiness” (Fig. 10-bottom). The second task, operated
on a soldier statue instead, was to “brighten the colours of the image
but reduce the strength of the specular highlights” (Fig. 10-top).

Two resulting variables were recorded. First, the time until a user
would say to be satisfied with the result. Second, the percentage
of how often other, external subjects would consider one condition
to produce results that achieve the goal more successfully than the
other. To this end, random pairs of results produced for one task
with and without the condition were shown to Amazon Mechanical
(AMT) turk users together with the initial image and the textual
description of the goal, asking them in a 2-alternative forced choice
(2AFC) “which image achieves the textual goal better” (Nm = 221
unique workers). Preference was computed as the AMT confidence-
weighted mean, where confidence is the probability of giving the
same answer when being asked the same question. Each vote was
weighted by the number of consistent answers (same answer to same
questions).

The hypothesis is, that the condition has an effect on the outcome.
We find this to be the case with statistical significance, that the
layered (our) time is 65 seconds (less is better) while it is 151
seconds for no layers (p < .0001 paired dependent t-test) and that
the layered (our) preference is 70.0 % (more is better) (p < .0001
binomial test). While the set of tasks and images is limited and no
generally accepted benchmark for layered editing is yet available,
this is a first indication that automatically generated layers, such as
we suggest, can lead to fast and accurate appearance editing.

Finally, the reader is encouraged to refer to the supplementary
material to get a qualitative impression of typical edits produced
with and without layered representations. It contains results for the
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Original Ours SIRFS IIW DI
ρ E‘ ρ E‘ ρ E‘ ρ E‘

Figure 9: Comparison of our approach to three different reflectance and shading estimation techniques SIRFS [BM15], IIW [BBS14], and
DI [NMY15]. We run their method on real images and compare their results to ours.
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Figure 10: User study finding. The first row is the first, the bot-
tom row the second task. The right plots shows average time for
completion in seconds (less is better, annotated are 0.95 confidence
intervals) for both methods. The middle plot shows average prefer-
ence ratings (more is better). The vertical bar for preference is in
units of consistency-weighted votes (see text). The right shows the
preference for results produced by each individual user.

complete set of all inputs we tested; due to space restrictions at
256×256 resolution only. Additionally, we include all the edits
results from our user study and the associated original PSD files on
which they were performed.

Limitations. Like in many CNN based learning approaches, the
shortcoming of our two networks are hard to pin down (for unseen
data). We have trained on several different classes of objects, which

we found to generalize well to other classes. Images that include
phenomena not part of the training, i. e., illumination (individual
point lights instead of environment maps), materials (transparency,
scattering, anisotropy) or shape (hair, plants) or light transport (soft
shadows, indirect light, caustic) remain to be investigated in future
work. Also, fundamental limitations of layered image editing remain,
such as the inability to completely change the light, change the
material or add cast shadows.

5. Conclusion

We have suggested the first decomposition of general images into
edit-friendly layers, that were previously only possible either on syn-
thetic images, or when capturing multiple images and manipulating
the scene. We have shown that overcoming these limitations allows
producing high-quality images, but it also saves capture time and
removes the limitation to renderings. Future work could investigate
other decompositions such as global and direct illumination, sub-
surface-scattering or directional illumination or other inputs, such
as videos.
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ASENTE P., LU J., SÝKORA D.: StyLit: Illumination-guided example-
based stylization of 3D renderings. ACM Trans. Graph. (Proc. SIG-
GRAPH) 35, 4 (2016). 3

[FWHC17] FAN Q., WIPF D. P., HUA G., CHEN B.: Revisiting deep im-
age smoothing and intrinsic image decomposition. CoRR abs/1701.02965
(2017). 2

[GMLMG12] GARCES E., MUNOZ A., LOPEZ-MORENO J., GUTIER-
REZ D.: Intrinsic images by clustering. Comp. Graph. Forum (Proc. Eu-
rogr. Symp. Rendering) 31, 4 (2012). 2

[Hec90] HECKBERT P. S.: Adaptive radiosity textures for bidirectional
ray tracing. ACM SIGGRAPH Computer Graphics 24, 4 (1990). 2

[HWBS13] HAUAGGE D., WEHRWEIN S., BALA K., SNAVELY N.: Pho-
tometric ambient occlusion. In Proc. IEEE Conf. Comp. Vision & Pat.
Rec. (CVPR) (2013). 2

[KHFH11] KARSCH K., HEDAU V., FORSYTH D., HOIEM D.: Render-
ing synthetic objects into legacy photographs. In ACM Trans. Graph.
(Proc. SIGGRAPH Asia) (2011), vol. 30. 2

[KK07] KOZLOWSKI O., KAUTZ J.: Is accurate occlusion of glossy
reflections necessary? In Proc. Appl. Percept. in Gr. & Vis. (APGV)
(2007), pp. 91–98. 3

[KPSL16] KIM S., PARK K., SOHN K., LIN S.: Unified depth prediction
and intrinsic image decomposition from a single image via joint convo-
lutional neural fields. In Proc. Eur. Conf. Comp. Vision (ECCV) (2016),
pp. 143–59. 2, 5

[KRFB06] KHAN E. A., REINHARD E., FLEMING R. W., BÜLTHOFF
H. H.: Image-based material editing. ACM Trans. Graph. (Proc. SIG-
GRAPH) 25, 3 (2006). 2

[KSH12] KRIZHEVSKY A., SUTSKEVER I., HINTON G. E.: Imagenet
classification with deep convolutional neural networks. In Proc. Neur. Inf.
Proc. Sys. (NIPS) (2012). 5

[KVDCL96] KOENDERINK J., VAN DOORN A., CHRISTOU C., LAPPIN
J.: Perturbation study of shading in pictures. Perception 25, 1009-26
(1996). 4

[LBBH98] LECUN Y., BOTTOU L., BENGIO Y., HAFFNER P.: Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11
(1998), 2278–324. 5

[LEN09] LALONDE J.-F., EFROS A. A., NARASIMHAN S. G.: Estimat-
ing natural illumination from a single outdoor image. In Proc. IEEE Intl.
Conf. on Comp. Vision (ICCV) (2009). 2

[LW94] LAFORTUNE E. P., WILLEMS Y. D.: Using the modified phong
reflectance model for physically based rendering. Tech. Rep. CW 197,
Dept. Computerwetenschappen, KU Leuven, Nov. 1994. 4

[MKVR09] MERTENS T., KAUTZ J., VAN REETH F.: Exposure fusion:
A simple and practical alternative to high dynamic range photography.
Comp. Graph. Forum (Proc. Pacific Graphics) 28, 1 (2009). 2

[MZBK06] MALLICK S. P., ZICKLER T., BELHUMEUR P. N., KRIEG-
MAN D. J.: Specularity removal in images and videos: A PDE approach.
In Proc. Eur. Conf. Comp. Vision (ECCV) (2006). 2

[NH10] NAIR V., HINTON G. E.: Rectified linear units improve restricted
boltzmann machines. In Proc. Intl. Conf. Mach. Learn. (ICML) (2010),
pp. 807–14. 5

[NMY15] NARIHIRA T., MAIRE M., YU S. X.: Direct intrinsics: Learn-
ing albedo-shading decomposition by convolutional regression. In
Proc. IEEE Intl. Conf. on Comp. Vision (ICCV) (2015). 2, 8, 9

[OCDD01] OH B. M., CHEN M., DORSEY J., DURAND F.: Image-based
modeling and photo editing. In Proc. SIGGRAPH (2001). 2

[RBD06] RUSINKIEWICZ S., BURNS M., DECARLO D.: Exaggerated
shading for depicting shape and detail. ACM Trans. Graph. (Proc. SIG-
GRAPH) 25, 3 (2006). 2

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. In Proc. Med. Image
Comp. and Comp.-Assisted Int. (2015). 5

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approximating
dynamic global illumination in image space. In ACM SIGGRAPH Symp.
Interact. 3D Fr. & Games (i3D) (Feb. 2009). 5, 6

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

24



Innamorati et al. / Decomposing Single Images for Layered Photo Retouching

[RH01a] RAMAMOORTHI R., HANRAHAN P.: An efficient representation
for irradiance environment maps. In Proc. SIGGRAPH (2001). 5

[RH01b] RAMAMOORTHI R., HANRAHAN P.: A signal-processing frame-
work for inverse rendering. In Proc. SIGGRAPH (New York, NY, USA,
2001), ACM, pp. 117–128. 3

[RLMB∗14] RICHARDT C., LOPEZ-MORENO J., BOUSSEAU A.,
AGRAWALA M., DRETTAKIS G.: Vectorising bitmaps into semi-
transparent gradient layers. Comp. Graph. Forum (Proc. Eurogr. Symp.
Rendering) 33, 4 (2014), 11–19. 3

[RRF∗16] REMATAS K., RITSCHEL T., FRITZ M., GAVVES E., TUYTE-
LAARS T.: Deep reflectance maps. In Proc. IEEE Conf. Comp. Vision &
Pat. Rec. (CVPR) (2016). 2

[RTD∗10] RITSCHEL T., THORMÄHLEN T., DACHSBACHER C., KAUTZ
J., SEIDEL H.-P.: Interactive on-surface signal deformation. In ACM
Trans. Graph. (Proc. SIGGRAPH) (2010), vol. 29. 3

[SBD15] SHELHAMER E., BARRON J. T., DARRELL T.: Scene intrinsics
and depth from a single image. In CVPR Workshops (2015), pp. 37–44.
2, 5

[SPN∗15] SCHMIDT T.-W., PELLACINI F., NOWROUZEZAHRAI D.,
JAROSZ W., DACHSBACHER C.: State of the art in artistic editing of
appearance, lighting and material. In Comp. Graph. Forum (2015). 3, 6

[TABI07] TODO H., ANJYO K.-I., BAXTER W., IGARASHI T.: Locally
controllable stylized shading. ACM Trans. Graph. (Proc. SIGGRAPH)
26, 3 (2007), 17. 3, 6

[TI05] TAN R. T., IKEUCHI K.: Separating reflection components of
textured surfaces using a single image. IEEE Tr. Pat. An. & Mach. Intel.
(PAMI) 27, 2 (2005). 8

[TNI04] TAN R. T., NISHINO K., IKEUCHI K.: Separating reflection
components based on chromaticity and noise analysis. IEEE Tr. Pat. An.
& Mach. Intel. (PAMI) 26, 10 (2004). 2, 8

[VPB∗09] VERGNE R., PACANOWSKI R., BARLA P., GRANIER X.,
SCHLICK C.: Light warping for enhanced surface depiction. In ACM
Trans. Graph. (Proc. SIGGRAPH) (2009), vol. 28, ACM. 3

[YGL∗14] YE G., GARCES E., LIU Y., DAI Q., GUTIERREZ D.: Intrinsic
video and applications. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4
(2014), 80. 2

[YJL∗15] YANG W., JI Y., LIN H., YANG Y., BING KANG S., YU J.:
Ambient occlusion via compressive visibility estimation. In Proc. IEEE
Conf. Comp. Vision & Pat. Rec. (CVPR) (2015). 2

[ZIKF15] ZORAN D., ISOLA P., KRISHNAN D., FREEMAN W. T.: Learn-
ing ordinal relationships for mid-level vision. In Proc. IEEE Conf. Comp.
Vision & Pat. Rec. (CVPR) (2015), pp. 388–96. 2

[ZKE15] ZHOU T., KRAHENBUHL P., EFROS A. A.: Learning data-
driven reflectance priors for intrinsic image decomposition. In Proc. IEEE
Conf. Comp. Vision & Pat. Rec. (CVPR) (2015), pp. 3469–3477. 2

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

25




