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Figure 1: Appearance manipulation of a single photogrgpdp imageswhen using off-the-shelf software like Photoshop dirg@eif arrow)

and when using the same in combination with our new laye(rigit arrow) For the car example, the image was decomposed into layers
(albedo, irradiance, specular, and ambient occlusion), which were then manipulated individually: specular highlights were strengthened and
blurred; irradiance and ambient occlusion were darkened and have added contrast; the albedo color was changed. While the image generated
without our decomposition took much more effort (selections, adjustments with curves, and feathered image areas), the result is still inferior.
For the statue example, a different decomposition splitting the original image into light directions was used. The light coming from the left
was changed to become more blue, while light coming from the right was changed to become more red. A similar effect is hard to achieve in
Photoshop even after one order of magnitude more effort. (Please try the edits yourself using the supplementary psd les.)

Abstract

Photographers routinely compose multiple manipulated photos of the same scene into a single image, producing a delity
dif cult to achieve using any individual photo. Alternately, 3D artists set up rendering systems to produce layered images to
isolate individual aspects of the light transport, which are composed into the nal result in post-production. Regrettably, these
approaches either take considerable time and effort to capture, or remain limited to synthetic scenes. In this paper, we suggest a
method to decompose a single image into multiple layers that approximates effects such as shadow, diffuse illumination, albedo,
and specular shading. To this end, we extend the idea of intrinsic images along two axes: rst, by complementing shading
and re ectance with specularity and occlusion, and second, by introducing directional dependence. We do so by training a
convolutional neural network (CNN) with synthetic data. Such decompositions can then be manipulated in any off-the-shelf image
manipulation software and composited back. We demonstrate the effectiveness of our decomposition on synthetic (i. e., rendered)
and real data (i. e., photographs), and use them for photo manipulations, which are otherwise impossible to perform based on
single images. We provide comparisons with state-of-the-art methods and also evaluate the quality of our decompositions via a
user study measuring the effectiveness of the resultant photo retouching setup. Supplementary material and code are available
for research use ageometry.cs.ucl.ac.uk/projects/2017/layered-retouching

1. Introduction this is a direct and easy way to control illumination. Other editing

Professional photographers regularly compose multiple photos of operatllons include gdjustmept of hues, blur, sharpenlr]g, etc. These
the same scene into one image, giving themselves more exibility operations are applied selectively to some layers, leaving the others

and artistic freedom than achievable by capturing a single photo.unaffected. While the results produced by layered editing could, in
They do so, by “decomposing’ the scene into individiaalers principle, also be produced by editing without layers, the separation
e.g., by cha;nging the scenes physical illumination, manipulating allows artists, and even novice users, to direct their edits to speci ¢

the individual layers (e. g., typically using a software such as Adobe aspects of an image without the need for_ tedjougly selecting image
Photoshop), and then composing them into a single image. regions based on color or shape, resulting in higher ef cacy. The
key to success is to have a plausible and organized separation into

A typical manipulation is changing a layer's transparency (or |ayers available.
“weight'): if a layer holds illumination from a speci c light direction,
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16 Innamorati et al. / Decomposing Single Images for Layered Photo Retouching

Unfortunately, acquiring layers requires either taking multiple effects without resorting to solving the inverse rendering problem.
photos CCDO0J or to use (layered) renderingdpc9q. The rst One aspect to change is illumination, such as ash-no- ash photog-
option is to capture photos in a studio setup requiring signi cant raphy [ED04 or exposure levelsS\IKVR09]. More advanced effect
setup effort but producing realistic inputs. The other option is to involve direction of light ALK 03, RBD06 FARQ7], eventually
use layered rendering, which is relatively straight-forward and well resulting in a more sophisticated user interfa8BB13. All these
supported, but the results can be limited in realism. approaches require specialized capture to gather multiple images

In this work, we set out to devise a system that combines the _captured by making invasive changes to the scene, limiting their use

strength of both approaches: the ability to directly work on real In practice to change an image post-capture. On-line video and photo

photos, combined with a separation into layers. Starting from a communities hold many examples of DIY instructions to setup such

single photograph, our system produces a decomposition into Iayers,s'tuOIIo con gurations.

which can then be individually manipulated and recombined into ~ For single images, a more classic approach is to perform in-
the desired image using off-the-shelf image manipulation software. trinsic decomposition into shading (irradiance) and diffuse re-
Fig. 1 shows two examples, one where specular highlights and ectance (albedo)BT78 GMLMG12,BBS14, possibly supported
albedo were adjusted on the input car image, while on the otherby a dedicated Ul for imagesBPD09 BBPD17, using anno-
directional light-based manipulations were achieved on single input tated dataBBS14 ZKE15, ZIKF15], or videos BST 14, YGL 14].
photographs. (Please refer to the supplementary for recorded editRecently, CNNs have been successfully applied to this task pro-
sessions and accompanying PSD les.) ducing state-of-the-art resulttNMY15, SBD14. For CNNSs, a
recent idea is to combine estimation of intrinsic properties and

| Wh'le marcljy Id(:]compoiltlolns are possmlcla,_ we sqgg;est a spem(;: depth EBD15 KPSL1§. We will jointly infer intrinsic properties
ayering model that works along two axes: intrinsic features and 4 homals to allow for a directional illumination decomposition.

direction. This is inspired by how many artists as well as practical Also the relation between intrinsic images and lter is receiving con-

con:]emporary r:anderlng SVSteES (i' g in '”te“"T:?“V? atppl'cal‘)t_'ontssiderable attentiorgHY 15, FWHC17. We also use a data-driven
sucl as °°g?fﬁ’“ er_ﬁam_es) wor .Ibrsoi ecodmp05| |?n |nho (‘;"_m |end CNN-based approach to go beyond classic intrinsic image decom-
occlusion, diffuse iflumination, albedo, and specular shading an position layers with further separation into occlusion and specular

ﬁecolnlc)i, ta de(;)omposnllon :nto I'gg.t dgeﬁlt'c:nsth Bﬁthh axesc,j alr_e Op,;components, as well as directions, that are routinely used in layered
lonal but can be seamiessly combined. Note that this modet Is no image editing (see Sed.and supplementary materials).

physical. However, it is simple and intuitive for artists and, as we

will show, its inverse model is effectively learnable. To invert this ~ In other related efforts, researchers have looked into factorizing
model, we employ a deep convolutional neural network (CNN) that components, such as specul@Nj04, MZBKO6] from single im-

is trained using synthetic (rendered) data, for which the ground truth @ges, or ambient occlusion (AO) from singiéJL 15] or multiple
decomposition of a photo into layers is known. While CNNs have captures {WBS13. We show that our approach can solve this
recently been used for intrinsic decompositions such as re ectance Problem at a comparable quality, but requires only a single photo
and Shading’ we address the novel prob|em of re ned decomposi_and in combination yleldS further Separation of diffuse Shading and
tion into ambient occlusion and specular as well as into directions, albedo without requiring a specialized method.

which is critical for the |ayered image manipula’[ion work ow. Our Despite the advances in recovering re ectance (e_ g_’ Wlth two

contributions are: captures and a stationarity assumpti8iL15], or with dedicated

1. awork ow, in which a single input photo is automatically decom- Y!S [DPTPGL1]), illumination (e. g., Lalonde et alLENO9] estimate
posed into layered components that are suited for post-captureSKY environment maps and Rematas et BRF 1€] re ectance
appearance manipulation within standard image editing software; Maps) and CNN-based dep&fF14 from photographs, no system

2. two plausible appearance decompositions, particularly suited for 40iNg & practical joint decomposition is known. Most relevant to
plausible appearance editing:advanced intrinsics, including ~ OUr €ffort, is SIRFSBM15)] that build data-driven priors for shape,
specular and ambient occlusion djddirection: and re ectance, |IIum|n§t|on, and use them in an Opt.ImIZE.ltIOT.] setup to

3. a exible, CNN-based approach to obtain a given type of decom- récover _the most likely shapt_e,_re ectan(_:e, and illumination under
position, leveraging the state-of-the-art in deep learning. these priors (see Setfor explicit comparison).

In the context of image manipulations, specialized solutions exist:
Oh et al. PCDDO1] represent a scene as a layered collection of color
and depth to enable distortion-free copying of parts of a photograph,
and allow discounting effect of illumination on uniformly textured
areas using bilateral Itering; Khan et aKRFB06 enable automat-
ically replacing one material with another (e. g., increase/decrease
specularity, transparency, etc.) starting from a single high dynamic
2. Previous Work range image by exploiting our “blindness' to certain physical in-
accuracies; Caroll et alCRA11] achieve consistent manipulation
9f inter-re ections; or the system of Karsch et aKHFH11] that
combines many of the above towards compelling image synthesis.

We evaluate our approach by demonstrating non-trivial appearance
edits based on our decompositions and a preliminary user study
We further demonstrate the ef cacy of our CNN architecture by
applying it to the well-established intrinsic images problem, where
it compares favourably to the state-of-the-art methods.

Combining multiple photos (also referred to as a “stackCP03)

of a scene where one aspect has changed in each layer is routinel
used in computer graphics. For example, NVIDIA IRay actively
supports rendered LPE layers (light path expressibies9Q) to Splitting into light path layers is typical in rendering inspired
be individually edited to simplify post-processing towards artistic by the classic light path notatiofpc9Q. In this work, different

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



Innamorati et al. / Decomposing Single Images for Layered Photo Retouching 17

from Heckbbert's physicdE(§D) L formalism, we use a more edit- M= g e %
friendly factorization into ambient occlusion, diffuse light, diffuse \g— ' {"';iil—z‘x( X @?:- +

albedo, and specular, instead of separating direct and indirect effects  Image Occlusion Albedo Irradiance Specular
While all the above works on photos, it was acknowledged that o = . _ + + 4 +

rendering beyond the laws of physics can be useful to achieve differ- \E - . & . ﬁ
ent artistic goalsTABIO7,VPB 09,RTD 10,RLMB 14,DDTP15 Image Bottom* Top* Left* Right*

SPN 15]. Our approach naturally supports this option, allowing pr=uy

users to freely change layers, using any image-level software of e: [ s X( ﬁ X E + G )

their choice, also beyond what is physically correct. For example, Top* Occlusion Albedo Irradiance Top Specular Tc

the StyLit system proposed by FiSser et BUI[ 16] correlates artis-

tic style with light transport expressions, but requires pixels in the Figure 2: The components of our two imaging models. The rst row
image to be labeled with light path information, e. g., by rendering is the intrinsic axis, the second row the directional axis, and the
and aligning. Hence, it can take our factorized output to stylize third row shows how one directional element can subsequently be
single photographs without being restricted to rendered content.  also decomposed into its intrinsics.

3. Editable Layers From Single Photographs

Our approach has two main parts: an imaging model that describes
a decomposition of a single photo into layers for individual editing

- . . . 3 3 .
and a method to perform this decomposition. the total light received; and nally$2 [0;1]° 2 R* is thespecular

shadingin units of radiance, where we do not separate between the

Model. The imaging model (Se8.1) is motivated by the require- re ectance and the illumination (see Figtop row).

ments of a typical layered work ow (Se8.4): The layers have to This model is a generalization of typical intrinsic im-
be intuitive, they have to be independent, they should only use blend ages BKPB17], which only models shading and re ectance, to
modes available in a (linear) off-the-shelf image editing software jc|yde specular and occlusion. While in principle occlusion acts dif-
and they should be positive and low-dynamic-range (LDR). This ferently on diffuse and specular components, we follow Kozlowski

motivates a model that can decompose along two axes: intrinsics and; g Kautz KK07], who show that jointly attenuating diffuse and
directionality. These axes can be combined and use a new directionag‘pecmar re ectance by the same occlusion term is a good approxi-

basis we propose. mation under natural lighting, by usir@, as a joint multiplier of

= . ) ) r E andS thus keeping the user-visible re ectance components to
Decomposition. The decomposition has two main steps: (i) produc- 5 minimum.

ing training data (Se@.2) and (ii) a convolutional neural network
to decompose single images into editable layers (S&}. The In summary, this decomposition produces four layers from each
training data (Sec3.2) is produced by rendering a large number input image that can be combined with simple blending operations
of 3D scenes into image tuples, where the rst is the composed in typical image retouching software.
image, while the other images are the layers. This step needs to be
performed only once and the training data will be made available
upon publication. The decomposition (S&c3) is done using a Directional model. The directional model is a generalization of
CNN that consumes a photo and outputs all its layers. This CNN the above. We express pixel color as a generalized intrinsic image
is trained using the (training) data from the previous step. We se-aS before, but with diffuse illumination depending on the surface
lected a convolution-deconvolution architecture that is only to be normal, and specular shading depending on the re ection vector:
trained once, can be executed ef ciently on new input images, and N
its de nition will be made publicly available upon publication. Cc= Oaé, (t bi(NE+b(r9, @
i=1
3.1. Model i . )
whereb; 2 21 RS, i 2 1:::N, are basis functions of aN-
We propose an image formation model that can decompose thedimensional lighting basis, parameterized by the surface orientation
image along one or two independent axis: intrinsic features or direc-n, and the re ected orientation:= 2hv;nin v, respectively. All
tionality (Fig. 2). directions are in view space, so assuming a distant viewer the view
directionisv  (0;0;1)” by construction.

Non-directional model. We model the colo€ of a pixel as

Especially for diffuse lighting, a commonly used lighting ba-

C=04r E+9); @ sis would be rst-order spherical harmonics (SH), i.@P) =

whereQO, 2 [0;1] 2 R denotes thambient occlusionwhich is the 8y, ;Y25 vh). That basis is shown to capture diffuse re ectance
fraction of directions in the upper hemisphere that is blocked from at high accuracyRHO1H; however, as we aim for a decomposition
the light; the variable 2 [0;1]3 2 R3 describes théiffuse albedp amenable to be used in traditional photo processing software, which
i. e., the intrinsic color of the surface itself; the variagl@ [0;1]3 2 typically quantizes and clamps any layer calculation®i], the
R3 denotes theliffuse illumination(irradiance), i. e., the color of  negative lobes of SH would be lost when stored in an image layers.

© 2017 The Author(s)
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A common positive-only reparameterization would use the six gen- R *i
erator functions, Image % N N
b =1=2 v, 1,

ol =

.’L*F.ﬂ

Occlusion,, > > A = )

FSH — 0 /
b3h=1= =Y, @ =
bt =1= =], (3 w3 N ® @ V\ﬂ
; 0 — RSH 4 RSH 1_ fSH FSH yvO0 — jSH [SH bt
with YO - b~1 + b2 ! Y1 - b2 bl 'Yl - b4 b3 , and Irradiance - 4 ‘ |y 71
Yi=Dbg" bEH. Initial experiments with that lighting basis, how- g N 4
ever, showed that the necessary blending calculations between the S _— ‘
corresponding editing layers lead to excessive quantization in an Spec”'ar‘ }‘“" ‘ ; a .
8-bit image processing work ow, and even using Photoshop's 16-bit

mode mitigated the problem only partially. Moreover, direct editing Figure 4: Samples from our set of synthetic training data.
of the basis function images turned out unintuitive, because

— ]|
|

1. the effect of editing pixels corresponding to negative SH contri-

butions is not easily evident to the user; o shown in the second and third row of Fi2).the 14 output layers can
2. the strong overlap between basis functions makes it dif cult to  pe either collapsed onto 6 directional layers or kept as a combination
apply desired edits for individual spatial directions only. of both intrinsic and directional decomposition.

This led us to propose a sparser positive-only basis, where spatial
directions are mostly decoupled. After experimentation with various 3 2 Training Data

bases, we settled on a normalized variaritdt as: )
There are many values @f,, E, r , andSto explain an observed

bi(w) = BiSH(W)ng BjSH(W)p colorC, so the decomposition is not unique. In the same way, many
=1 normals are possible from a pixel. Inverting this mapping from

hv-ci+ 1P a single observati_on |s likely to b(_a impossible. At the same time,

= ﬁ , (4) humans have an intuition how to infer re ectance on familiar ob-

aj=1 hw;cji + 1 jects KVDCL96]. One explanation can be that they rely on a context

X, on the spatial statistics of multiple observati@{g), such that a

using the dotproduct-based formulation of 1st-order SH, denoting JaHal | ]
decomposition into layers becomes possible. In other words, sim-

with ¢; the six main spatial directions; the normalization term en- 7> -
sures partition of unity, i. eéiN bi(w) = 1. Empirically, we found ply not all arrangements of decompositions are equally likely. As

p= 5to offer the best compromise between separation of illumina- d€scribed next, we employ a CNN to similarly learn such a decom-

tion functions and smoothness. A polar surface plot of the six basis POSition. Training data comprises of synthetic images that show a
functions overlapping is shown in Figuge random shape, with partially random re ectance shaded by random

environment map illumination.

Shape. Surface geometry consists of about 2,000 random instances
from ShapeNet@ 15 coming from the top-level classes, selected
from ShapeNetCore semi-automatically. Speci cally, ShapeNetCore
has 48 top-level classes among which we use 27. We discarded
classes that had either very few models or that were considered
) uncommon (e. g., birdhouse). We then randomly sampled a tenth of
02 s u?\ . the total models from each class resulting in 1,930 models. These

" models were also manually Itered to be free of meshing artifacts.

P M Shapes were rendered under random orientation while maintaining

theup direction intrinsic to each model.

Figure 3: Directional basesLeft: BiSH, a positive-only reparame-
terization of the 1st-order SH basis exhibits strong overlap between req actance. Re ectance using the physically-corrected Phong
neighboring lobes (drawn as opaque surface plots), and with it ,o4e| LW94] was sampled as follows: the diffuse colors come
strong cross-FaIk of edits pf the associat.ed editing lay&ight: directly from ShapeNet models. The specular compokeistas-
our bi (Equation(4)) remains smooth while lobes are separated  gymed to be a single color. A random decision is made if the material
much more strongly. Note _thbe has been uniformly rescaled to 5 assumed to be electric or dielectric. If it is electric, we choose the
be partition of unity; the difference in amplitude (see axis labels) gpecylar color to be the average color of the diffuse texture. Other-
further documents the sparser energy distribution in our basis. wise, we choose it to be a uniform random grey value. Glossiness is
setasn = 3:01%, wherex 2 U[0;1].

Using this basis, Equatiof2) produces 14 layers from an input
image — where twelve are directionally-dependent and two are not ( lllumination. lllumination is sampled from a set of 90 high-
andQg) — that can be combined using any compositing software. As dynamic-range (HDR) environment maps in resolud? 256

© 2017 The Author(s)
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that have an uncalibrated absolute range of values but are represemetwork is fully-convolutional. We start at a resolution2§6 256

tative for typical lighting settings: indoor, outdoor, as well as studio that is reduced down t® 2 through stride-two convolutions. We

lights. lllumination were randomly oriented around the vertical axis. then perform two stride-one convolutions and increase the number
of feature layers in accordance to the required number of output lay-

Rendering. After xing shape, material, and illumination, we syn- ~ €rs (i. €., quadruple for the layers, while the whole step is skipped for
thesize a single image from a random view from a random angle normal estimation). The deconvolution part of the network consists
around the vertical axis. To produ€e we compute four individ-  Of blocks performing a resize-convolution (upsampling followed by
ual components, that can be composed into Egy. further into a stride-one convolution), cross-linking and a stride-one convolution.
directions according to EQ as per-pixel normals are known at  Every convolution in the network is followed by a ReLNH{10]
render time. Due to the large number of training data required, we non-linearity except for the last layer, for which a Sigmoid non-
use ef cient, GPU-based rendering a|gorithms_ The occlusion term Iinearity is used instead. This is done to normalize the output to the
O, is computed using screen-space occlusR&$09. The diffuse rangef0; 1]. Images with an uneven aspect ratio will be appropriately
shadingE is computed using pre-convolved irradiance environment cropped and/or padded to be square with white pixels. All receptive
maps RHOld S|m||ar|y, Specu|ar Shading is the product of the eldsare3 3 plXelS n S!Ze except for the rst and last two Iayers
specular coloks selected according to the above protocol, and a thatare5 5.No lter weights are shared between layers. Overall,
pre-convolved illumination map for gloss levelNo indirect illu- this network has about 8.5 M trainable parameters.

mination or local interactions are rendered. For the loss function, we combine a per-layer L2 loss with a

While this image synthesis is far from being physically accurate, novel three-foldecombinatiorloss, that encourages the network
it can be produced easily, systematically and for a very large number to produce combinations that result in the input image and ful lls
of images, making it suitable for learning the layer statistics. Overall the following requirements: (i) the layers have to produce the input,
we produce 300,000 unique samples in a resolutioR56f 256 soC = Oy(E r + 9); (i) the components should explain the image
(ca. 14 GB) in eight hours on a current PC with a higher-end GPU. without AO, i.e.,C=0,= Er + § and (iii) diffuse re ected light
A fraction of the images totalling to about 30000 were withheld should explain the image without AO and speculaiCs®,  S=

to check for convergence (and detect over- tting). We also used Er . Note that if the network was able to always perform a perfect
dropout to prevent over- tting. decomposition, a single L2 loss alone would be suf cient. As it

makes errors in practice, the additional loss expressions bias those
Units. Care has to be taken in what color space learned and training errors to at least happen in such a way that the combined result
data is to be processed. As the illumination is HDR, the resulting does not deviate as much from the input. All losses are in the same
image is an HDR rendering. However, as our input images will be RGB-difference range and are weighted equally.
LDR at deployment time, the HDR images need to be tone-mapped

to match the'L range.l To this ehnd, automatic expolsur(_a cgntrol 'S the differences between the original and recombined images) by
used to map those values into the LDR range, by selecting @%e progressively adding each of the three additional losses to a standard

luminance percentile pf a random subset of the pixels anq scalel_2 loss. While a positive trend can be observed with the DSSIM
all values such that this value mapsltorhe rendered resutt is metric, these bene ts are not as evident on the NRMSE metric.
stored after gamma-correction. All other components are stored in

physically linear unitsq = 1:0) and are processed in physically Overall, the network is a rather standard modern design, but
linear units by the CNN and the end-application using the layers. trained to solve a novel task (layers) on novel kind of training
Doing the nal gamma-correction will consequentially be up to the data (synthesized, directionally-dependant information). We used
application using the layers later on (as shown in our edit examples).TensorFlow p 15] for our implementation platform and each model
requires only several hours on a NVIDIA Titan X GPU with 12 GB
3.3. Learning a Decomposition on-board RAM to train (both have been trained for 12 hours). We

- ) ) used stochastic gradient descent to solve for the network, which we
We perform decomposition using a CNNEBH98,KSH12 trained ran for 6 epochs with batches of size 16. A more detailed description

using the data produced as described above. Input to the network isof the network's architecture can be found in the supplementary
a single image such as a photograph. Output for the non-directional ., 5tarials.

variant are ve images (occlusion, diffuse illumination, albedo, spec-
ular shading, and normals), where occlusion is scalar and the oth-
ers are three-vector-valued. Note, that normals and intrinsic Prop-raple 1: Comparing different steps of our recombination I¢svs)

erties are estimated jointly, such as done before for albedo and;, terms of two metricgcolumns) DSSIM and NRMSE on our
depth BBD15KPSL1§. The normals are not presented to the user, | oiqation set.

but only used to perform the directional decomposition.

In Thbl. 1, we numerically evaluate the recombination error (i.e.,

We have also experimented with letting the CNN directly compute Loss NRMSE DSSIM
the directional decomposition, but found that having an explicit L2 0.2549 0.0807 0.0234 0.0129
decomposition using normal and re ected direction to be easier to L2 + (i) 0.2598 0.0833 0.0229 0.0126
train and produce better results. L2 + (iii) + (i) 0.2588 0.0799 0.0229 0.0122

This design follows the convolution-deconvolution idea with L2+ (i) + @)+ () 02460 0.0787 00210 0.0119

cross-links, resulting in a decoder-encoder schar#eB[1g. The
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Input
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Albedo
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Figure 5: Decomposition of input images into light layers. Please see “Decomposition” indSec.
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Back
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Figure 6: Decomposition of input images into the six directional layers for different objects. Please see “Decomposition™4n Sec.

3.4. Composition tools with WYSIWYG feedback (please refer to the supplementary

. . . for example PSD les).
For composition any arbitrary software that can handle layering, P )

such as GIMP, Adobe Photoshop, or Blender, can be used. Our The artistis free to make any local edits to any of the layers, which
decomposition is so simple that it can be implemented using a basicusually leads to user-predictable results, owing to the successful
set of Photoshop layers of the appropriate additive and multiplica- decoupling of appearance contributors. Note that we do not limit the
tive blend modes, followed by a nal gamma mapping. The whole manipulation to producing a composition that is physically valid,
setup process can easily be automated through the use of Photoshopecause this would be unduly limiting artistic expression at this part
macros. The content is then ready to be manipulated with existing of the pipeline TABIO7, RGS09SPN 15].
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Input Single channel edit Edit using our decomposition Input Single channel edit Edit using our decomposition
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Figure 7: O4 (r E+ 9 editing. RED CAR: specular highlights Figure 8: Directional editing.GRAY CAR: light coming from the
were strengthened and blurred, while hue was adjusted.ROBOT: right was emphasize@vOLVERINE STATUE blue light sources on
specular highlights were blurred, while preserving high frequency the right and left sides of the statue were simulated. Differences with
details.sOLDIER STATUE specular highlights were reduced, and  single channel edits are best seen near the tights of the strafie.
brightness of albedo enhanced. Dark regions were also made moreCAR: light coming mostly from the right was simulatettA SET.
evident. Intuitively, in the single channel edit, the tasks clash against this example uses our 14-way edit. The specular color of the light
each otheroRANGE CAR specular highlights were boosted and  was changed based on directionality (blue from the left, red from the
parts of the car directly lit from light sources were emphasizsalr right). Note how the lidless teapot is fully blue in the single-channel
STATUE: the appearance of the statue was adjusted to simulate edit, as opposed to the edit using our decomposition, where red can
marble and copper, respectiveBrUITS: specular highlights were be seen on its right sideruITS: light coming from the bottom was
boosted and given a blue tint. Dark regions were emphasized. dimmed and light coming from the top was emphasized.

reference layer-decomposition or directional decomposition, so their
4. Results quality can only be judged qualitatively.

We report results in form of typical decompositions on im-  Representative results of decomposing images into appearance
ages, edits enabled by this decomposition, numeric evalu-|ayers are shown in Fig. The real-world photographs shown rep-
ation, and a preliminary user study. The full material with (esenta mix of natural and man-made objects, whose surface ap-
many more decompositions, high-resolution images, videos, pearance ranges from mostly diffuse, to sheen, to mirror-like gloss,
and user study material are found in our supplementary at featuring both uniform and structured diffuse albedo.

geometry.cs.ucl.ac.uk/projects/2017/layered- N ) ]
Overall, the decompositions turn out plausible and provide a clear

retouching .

separation of independent aspects of appearance. That plausibility

Note that a segmentation of the object is always provided. Given s critical for successful editing sessions. Existing failure cases are

our context (product photography), where such a segmentation issubtle: the tea set exhibits slight cross-talk from diffuse albedo into
part of the standard work ow, we assume a user can easily provide a the specular channel where the porcelain's color blends into pale
mask, e.g., using GrabCut. In general, the feaS|b|||ty of automatically green; equa”y, the subtle brown spots on the pear do not end up in
obtaining a mask is clear for product images using a monochromatic the albedo map but show as attenuations in the specular channel;
background. the mirror re ection of a table in the bowl of the food processor (far

right), which does not conform with our image formation model,
Decompositions.How well our network performs is best seen gets evenly distributed across all channels. Interestingly, very dark
when applying it to real images. Naturally, we do not know the areas, where an inherent ambiguity between low irradiance, low
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diffuse albedo, and high ambient occlusion exists, generally get tape 2: Comparing different methodeows)in terms of two metrics
attributed to a combination of low albedo and irradiance, while am- (columns) DSSIM and NRMSE on our validation set.
bient occlusion rather credibly remains limited to darkening around

strong apparent geometric features. Most importantly, however, we Layer Method NRMSE DSSIM
observe t'hat thesg types of failures are graceful enough to still allow Albedor IIW[BBS14 0.484 0397 0.066 0.040
for meaningful edits on a layer-basis. SIRFS BM15] 0.805 0.819 0.066 0.036
Directional decompositions are shown in F&.Their quality DI[NMY15] 0.598 0.290 0.076 0.038
largely depends on the quality of the normal map inferred from Ours 0.322 0.273 0.061 0.035
the input images. We again show a range of materials and objects; Shadinge® IIW[BBS14 0298 0.162 0.053 0.034
and most normal maps look plausible on rst sight. Closer scrutiny SIRFS BM15] 0.302 0.132 0.057 0.037
reveals instances where color or shading variations affect the normal DI[NMY15] 0.389 0.134 0.065 0.036
reconstruction, and little can be said about quantitative accuracy of Ours 0.167 0.079 0.045 0.033
the normals. Nevertheless, given the ill-posedness of the task, we
argue that the normal quality is remarkable. This shows in largely ~SpeculaiS SRC[rI05] 2.100 1.504 0.084 0.039
plausible directional lighting separations for each object. As we will Ours 0.535 0.299 0.060 0.032
show below, this still proves suf cient for effective and intuitive OcclusionO, Ours 0.098 0.034 0.050 0.031
editing. IrradianceE Ours 0.158 0.082 0.057 0.036

Edits. Typical edits are shown in Fig.and the directional variant

in Fig. 8. Note that we support both global manipulations, such as

changing the weight of all values in a layer, and local manipulations, in Photoshop. Tasks were given in written form. In one condition,
such as blurring the highlights or albedo individually. We show a the images were split into layers, in the other they were not. The
range of edit examples achieved with and without our decomposition. order in which the tasks were performed was randomized. Subjects
All edits were performed using Photoshop. Generally the effects were asked to perform thél{ N; = 16) trials within 3 minutes
were much easier to obtain using our decomposition. and to indicate when they were satis ed with the results. The rst
task was to “strengthen all the specular highlights” of a car and to
“blur the specular highlights across the object to simulate a material
with lower glossiness” (FiglO-bottom). The second task, operated
on a soldier statue instead, was to “brighten the colours of the image
but reduce the strength of the specular highlights” (E@top).

Classic intrinsic imagesBKPB17 assumeSto be zero (no spec-
ular) and combine our ternt3,; andD, the occlusion and the diffuse
illumination, into a single “shading” term that is separated from the
re ectancer , i.e.,

C=04r E+9 Oy E+0)= P—?ZE r:

Shadinge®

®)

Two resulting variables were recorded. First, the time until a user
would say to be satis ed with the result. Second, the percentage
of how often other, external subjects would consider one condition
to produce results that achieve the goal more successfully than the
other. To this end, random pairs of results produced for one task
with and without the condition were shown to Amazon Mechanical
(AMT) turk users together with the initial image and the textual
description of the goal, asking them in a 2-alternative forced choice

2AFC) “which image achieves the textual goal bett®im(= 221
A comparison of our decomposition and typical approaches to ( ) ‘which imag eV xwag i

te intrinsic i is sh . In Tabled unique workers). Preference was computed as the AMT con dence-
generate intrinsic images is shown in FgIn Tabled we compare weighted mean, where con dence is the probability of giving the

SKame answer when being asked the same question. Each vote was

datas_et was generated using rando.mly selected ShapeNet mo_dgls zi‘ﬁeighted by the number of consistent answers (same answer to same
described before and was not available to our network at training questions)

time. We see, that for product images, our approach can perform a

Similarly, specular separatioiiNl04, ABC11], does not identify
occlusion and separates into a diffuse t@rand a specular tern®®

C=04r E+9 04 (6)

g 5" Pef

DiffuseD  Speculais®

better separation into components than other published methods.

At N = 100the ﬁtd.ierror of the mean in SSIM units is in the
order of, e.g.p:35= 100= 0:03, that is, quite low, indicating that

even thel0OOsamples in our test dataset give a good estimate of a

methods effect, while still being able to compute the outcome with
slower methods.

The hypothesis is, that the condition has an effect on the outcome.
We nd this to be the case with statistical signi cance, that the
layered (our) time is 65 seconds (less is better) while it is 151
seconds for no layerp(< : 0001paired dependenttest) and that
the layered (our) preference is 70.0 % (more is better (0001
binomial test). While the set of tasks and images is limited and no

generally accepted benchmark for layered editing is yet available,

. . this is a rst indication that automatically generated layers, such as
User study. We have investigated how much the layered represen- y9 YErs, £
we suggest, can lead to fast and accurate appearance editing.

tation we suggest can facilitate appearance editing compared to
a non-layered representation. To this end, we have given subjects Finally, the reader is encouraged to refer to the supplementary
(Ns = 8) tasks (\; = 2) they had to complete in Photoshop. Subjects material to get a qualitative impression of typical edits produced

reported had a general technical knowledge of image manipulationwith and without layered representations. It contains results for the
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Original Ours SIRFS Iw DI
E' E E

Figure 9: Comparison of our approach to three different re ectance and shading estimation techniques BIRES, [IW [ BBS14, and
DI [NMY15. We run their method on real images and compare their results to ours.

avg.time total wins individual user edits we found to generalize well to other classes. Images that include
phenomena not part of the training, i. e., illumination (individual
point lights instead of environment maps), materials (transparency,
scattering, anisotropy) or shape (hair, plants) or light transport (soft
shadows, indirect light, caustic) remain to be investigated in future
work. Also, fundamental limitations of layered image editing remain,
such as the inability to completely change the light, change the
material or add cast shadows.

soldier

separate layers (ours)
single layer

ar

5. Conclusion

c

We have suggested the rst decomposition of general images into

edit-friendly layers, that were previously only possible either on syn-

thetic images, or when capturing multiple images and manipulating
Figure 10: User study nding. The rstrow is the rst, the bot-  the scene. We have shown that overcoming these limitations allows
tom row the second task. The right plots shows average time for producing high-quality images, but it also saves capture time and
completion in seconds (less is better, annotated are 0.95 con denceremoves the limitation to renderings. Future work could investigate
intervals) for both methods. The middle plot shows average prefer-other decompositions such as global and direct illumination, sub-

ence ratings (more is better). The vertical bar for preference is in surface-scattering or directional illumination or other inputs, such
units of consistency-weighted votes (see text). The right shows theys videos.

preference for results produced by each individual user.
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