Guided Ecological Simulation for Artistic Editing of Plant Distributions in Natural Scenes

Gwyneth A. Bradbury (UCL)
Kartic Subr (Disney Research)
Charalampos Koniaris (Disney Research)
Kenny Mitchell (Disney Research)
Tim Weyrich (UCL)
Contents

● Commercial tools for virtual landscapes

● Benefits and shortfalls

● Improvements and contributions

● Results
Guided Ecological Simulation for Artistic Editing of Plant Distributions in Natural Scenes

Ecological modelling provides a basis for realistic vegetation cover, drawing on research in biology.

Editing these models in a realistic way is a challenge but can be overcome by involving the artist in the simulation.
Commercial tools
Commercial content generation tools

- (Multi-class) random placement
 - brush-based or area scatter

- Procedural placement (simulation) according to certain terrain-based rules

- Good model variety
Commercial content generation tools

- (Multi-class) random placement
 - brush-based or area scatter

- Procedural placement (simulation) according to certain terrain-based rules

- Good model variety
Commercial content generation tools

- (Multi-class) random placement
 - brush-based or area scatter
- Procedural placement (simulation) according to certain terrain-based rules
- Good model variety
Advantages
Advantages

- Fine-grain control of model appearance and location
- High level of automation from procedural and random approaches
- Potentially faster workflow
Advantages

- Fine-grain control of model appearance and location post-generation
- High level of automation from procedural and random approaches
- Potentially faster workflow
Advantages

- Fine-grain control of model appearance and location post-generation
- High level of automation from procedural and random approaches
- Potentially faster workflow
Disadvantages
Shortfalls

- Don't result in truly natural-feeling scenes (repetitive, lack organic-ness and lack variety)

- Unintuitive control of edits (link between parameters/result is unclear)

- Lack editing based on natural parameters and phenomena (arguably more intuitive)
Shortfalls

- Don't result in truly natural-feeling scenes (repetitive, lack organic-ness and variety)

- Unintuitive control of edits (link between parameters/result is unclear)

- Lack editing based on natural parameters and phenomena (arguably more intuitive)
Shortfalls

- Don't result in truly natural-feeling scenes (repetitive, lack organic-ness and variety)
- Unintuitive control of edits (link between parameters/result is unclear)
- Lack editing based on natural parameters and phenomena (arguably more intuitive)
State of the art: summary

Tools fall into two main categories:

- Scattering brush/area solutions do exist but lack realism
- Simulations also exist, but are hard to control and harder to modify realistically
Our aims:

● A better trade-off between usability and realism

● A locally controllable / editable system that allows selective control of the underlying simulation

● Result: simulation 'fixes' unrealistic changes
Our aims:

- A better trade-off between usability and realism

- A locally controllable / editable system that allows selective control of the underlying simulation

- Result: simulation 'fixes' unrealistic changes
Our aims:

● A better trade-off between usability and realism

● A locally controllable / editable system that allows selective control of the underlying simulation

● Result: simulation 'fixes' unrealistic changes
Example – adding a feature

- Clearing/lake:
 artist doesn't have to think about brush strokes appearing at transition regions any more

- Mountain ranges:
 species adaptation to the altitude
Example – adding a feature

● Clearing/lake:
 artist doesn't have to think about brush strokes appearing at transition regions any more

● Mountain ranges:
 species adaptation to the altitude
Challenges

Designing tools which mimic natural phenomena is non-trivial

Furthermore, they must also maintain the simulation's realism, even after heavy editing
Challenges

Designing tools which mimic natural phenomena is non-trivial.

Furthermore, they must also maintain the simulation's realism, even after heavy editing.
Contribution
Contributions

- Combine ecosystem simulation with editing operations (global and local)
- Iterative artistic control
- Intuitive parameters for natural scenes: editable maps (elevation, rainfall, soil, masking)
- Editing maintains realism of the initial simulation
Contributions

- Combine ecosystem simulation with editing operations (global and local)
- Iterative artistic control
- Intuitive parameters for natural scenes: editable maps (elevation, rainfall, soil, masking)
- Editing maintains realism of the initial simulation
Contributions

- Combine ecosystem simulation with editing operations (global and local)
- Iterative artistic control
- Intuitive parameters for natural scenes: editable maps (elevation, rainfall, soil, masking)
- Editing maintains realism of the initial simulation
Contributions

- Combine ecosystem simulation with editing operations (global and local)
- Iterative artistic control
- Intuitive parameters for natural scenes: editable maps (elevation, rainfall, soil, masking)
- Editing maintains realism of the initial simulation
Method
Method

- Draw on the state of the art in ecosystem simulation
- Expose the simulation's time axis
- Develop means of artist interaction

Ch'ng 2009
Method

• **Draw on the state of the art in ecosystem simulation**

We use abiotic landscape maps to control a forest simulation using simplified rules found in nature:

- Large species phenotype bank (max. height / canopy size / age / seeding, adaptation / tolerance parameters to maps)
- Competition for, and adaptation to, resources (light, soil, water)
- Output: instance genotype (height, canopy size)
- Follows the landscape stability principle (resistance to change)

\[\text{Phenotype} = F(\text{environment}, \text{neighbours}, \text{genotype}) \]
Method

input
abiotic environmental maps
elevation soil rainfall

phenotype

species
genotypes

simulation
sense env. conditions C_i
compute adaptations A_i
update phenotypes (size, growth rate, etc.)
kill plants with zero energy
spawn seeds from mature plants

number of iterations

output forest

a) Ecologically-based simulator for plant distributions
Method

- Draw on the state of the art in ecosystem simulation
- Expose the simulation's time axis
- Develop means of artist interaction
Method

- Expose the simulation's time axis

 Allow navigation in temporal dimension:
 - Rewind, fast-forward, undo, redo

 Allow operations to control the rate of simulation in a region
 - Adaptive edits
Method

- Draw on the state of the art in ecosystem simulation
- Expose the simulation's time axis
- Develop means of artist interaction
Method

- Develop novel means of artist interaction
 - Brush-based sparsification/densification operations rerun simulation according to new constraints
 - Temporal feathering of the simulation

b) We introduce operators for guided editing
Results
Densify operator

Initial state, burn-in (120 years), adaptation to new abiotic maps (increase precipitation), densify NE side. Rendered from NW.
Sparsify and feathering operators

Given a simulation using the earlier abiotics and mask:
(a) sparsification, (b) feathering (c) densification (d) feathering
Creating pre-defined environments

(a) Random initialisation, (b) desert, (c) boreal forest, (d) temperate, (e) tropical.
Simulation and Editing
Limitations and future work

- Large data footprint
- Still a time-consuming task and lacks efficiency
 - but scales linearly doesn't yet exploit GPU
- Interaction rate:
 - 400K trees per second, Intel Core i7 (1.6GHz) with 16GB RAM
- Apply concepts to clutter generation
- Investigate using instances vs clusters
Summary

- We achieve a better trade-off between realism and editability

- Interactive and realistic editing of simulations
 - Artist remains in the loop and edits are ecologically supported
 - Iterative editing towards desired result

- Scales linearly with number of instances – local simulation only
With thanks to:

Engineering and Physical Sciences Research Council (grant EP/K023578/1),
Disney Research,
Maggie Kosek, Tom Haines, Stuart James
and
All of our anonymous reviewers