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A Heterogeneous Reflectance Model Applied to Human Skin:
Rendering and Acquisition

Melanin (top layer) Inter-layer absorption Hemoglobin (bottom layer) Final image

Figure 1: Our model approximates light transport in heterogeneous materials through the inter-scattering of light between layers. Here we
show the spatially varying parameters of the top and bottom scattering layers, and the infinitesimally thin absorbing layer between them. Only
these three parameter maps were used to generate the rendered final image on the right; there are no albedo textures.

Abstract

We introduce a heterogeneous, spectral, layered reflectance model
for translucent materials. Although the model is general, in this
paper we apply it to faithfully reproducing the complex variations
in skin pigmentation. Our reflectance model captures heterogeneity
through the inter-scattering of light between layers. Each layer has
an independent set of spatially-varying parameters, and we allow
arbitrary variations in parameters over the surface of a layer. We
assume that the local properties of each layer are slowly varying with
respect to the mean free path of light. For greater physical accuracy
and control, we introduce an infinitesimally thin absorbing layer
between scattering layers. To obtain parameters for our model, we
describe a novel acquisition method to infer heterogeneous model
parameters from multi-spectral photographs of skin patches. We
use an inverse rendering technique to globally optimize the best
set of parameters for each pixel of the patch. We also show that
our method finds close matches to a wide variety of inputs with
low residual error. We demonstrate our heterogeneous reflectance
model by rendering complicated skin visual effects such as veins,
tattoos, rashes, and freckles, without the use of albedo textures. Also,
by varying the parameters to our model, we achieve effects from
external forces, such as external pressure changing blood flow within
the skin.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism

Keywords: Skin reflectance, subsurface scattering, BSSRDF, re-
flection models, layered materials, light transport, realistic image
synthesis

1 Introduction

Human skin exhibits a striking range of appearance due to physiolog-
ical and structural variations across its surface and within its layers.
This heterogeneity may occur naturally, such as freckles, splotches,
veins, or rashes, or be introduced artificially via external forces (e.g.
pressure causing blood to increase or decrease) or pigmentation such
as tattoos. When building shading models to describe, and designing
methods for acquiring, skin’s appearance, it is imperative that we
understand and take these variations into account.

Understanding the appearance of skin is particularly challenging as
skin reflectance is dominated by subsurface scattering [Igarashi et al.
2005]. In addition, the spectral reflectance of skin is quite complex

due to its many chemical constituents and structural variation [van
Gemert et al. 1989]. Existing models used for skin, such as those
based on the diffusion approximation [Jensen et al. 2001; Donner
and Jensen 2005], generally rely on homogeneous approximations
for both rendering and acquisition. To give the impression of hetero-
geneity, they rely on an approximate translucency modulated by a
surface albedo texture [Jensen and Buhler 2002; Hery 2003].

Our main contribution is a reflection model for rendering hetero-
geneous multi-layered translucent materials. Although our model
is general, in this paper we apply it towards capturing and repro-
ducing the heterogeneity of skin appearance. Our model is based
on recent work on multi-layered translucent materials [Donner and
Jensen 2005]. The key difference, however, is rather than computing
simple profiles for materials, we use this layered light transport to
model heterogeneous scattering of light. Though we assume local
homogeneity around a particular point, as light scatters between
layers, we apply the spatially-varying properties of the layers. This
allows our model to simulate complex, heterogeneous visual effects
without albedo textures.

Though it can be driven by arbitrary parameter maps, to facilitate
the use of our model we describe a novel technique for directly
recovering model parameters from multi-spectral images of real
skin patches using inverse-rendering. Our method is accurate and
versatile enough to capture a number of physiological properties
over a wide range of body regions.

We evaluate our methods by comparing our obtained parameters
to acquired data, and by rendering realistic novel images of skin
without albedo textures, such as in Figure 1. We also demonstrate
how to simulate physiological changes in skin by modifying model
parameters (see Figure 8).

2 Previous Work

The reflectance of translucent materials such as skin has received
considerable attention in computer graphics. Here we focus on the
work related to reflectance measurement and shading models, as
they relate to our proposed methods. For a more thorough survey of
techniques, see Igarashi et al. [2005].

2.1 Reflectance models:

Reflectance models for skin range from simple BRDF approxima-
tions to the scattering of light [Hanrahan and Krueger 1993; Stam
2001], to comprehensive models that simulate small-scale anatomi-
cal and physiological detail [Krishnaswamy and Baranoski 2004].
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As they rely on 1D approximations to light transport, the former do
not capture the characteristic subsurface scattering of translucent
materials. Models that rely on an accurate volumetric light trans-
port simulation are typically too complex and too slow for practical
applications in graphics. As a successful compromise between accu-
racy and complexity, models based on the diffusion approximation
have become popular. Jensen et al. [2001] introduced the diffusion
dipole approximation along with a simple technique for measuring
optical parameters of materials, including two samples of skin. The
method is limited to homogeneous, semi-infinite slabs with constant
scattering and absorption properties.

Despite these limitations, methods have been developed to deploy
the dipole model in rendering spatial surface variations. Jensen and
Buhler [2002] and Héry [2003] fix one parameter (translucency)
of the model and vary diffuse reflectance to match a given albedo
texture. This approach, however, assumes that the transport of light
between points on the material depends only on a single set of ho-
mogeneous parameters. Weyrich et al. [2006] use a modulation
texture on top of the homogeneous scattering process, which ren-
ders faithfully under uniform lighting. Such modulation textures,
however, produce incorrect results under structured illumination, as
seen in Section 4. Others have employed the dipole model with fully
varying parameters [Tariq et al. 2006], but this use of the model
in the presence of heterogeneity, particularly when there are large
variations in parameters within small areas, is not well defined.

Donner and Jensen [2005] introduced the diffusion multipole ap-
proximation for thin slabs and multi-layered translucent materials.
Although their model more accurately captures the reflectance of
translucent layered materials, such as skin, it is difficult to obtain
optical parameters for specific materials. The multipole model was
later applied to create a spectral shading model specifically for ren-
dering skin [Donner and Jensen 2006], that includes a small set of
chromophore parameters to control overall skin appearance. Spa-
tial and subsurface variations other than the differences between
homogeneous layers, however, are still approximated with an albedo
modulation texture. D’Eon et al. [2007] have recently implemented
the multipole model to run on modern graphics hardware. Though
their method allows interactive rendering of layered translucent
materials, it does not improve on the model itself.

More general heterogeneous models that capture the BSSRDF of
materials have been developed with the specific goal to obtain model
parameters from measurements [Goesele et al. 2004; Tong et al.
2005; Peers et al. 2006]. These models, however, capture only the
relationship between incident and exitant light, leaving the under-
lying physical and physiological structure of the material unknown.
For skin, it is particularly valuable to understand the relationship
between structure, pigmentation, and reflectance, as they allow the
derivation of physical models for predicting the appearance of arbi-
trary samples of skin. Wang et al. [2007] acquire a volumetric rep-
resentation of heterogeneously scattering materials. They describe
a numerical method for approximating heterogeneous diffusion on
the GPU, but require a complex discretization of the geometry into
a coupled polygrid.

2.2 Skin Analysis
Early work that acquired and analyzed skin reflectance is based on
pure BRDF models. Dana et al. [1999] and Marschner et al. [1999]
use a camera and a light source to acquire images of skin under
different angles of incidence and reflection. Debevec et al. [2000]
and Weyrich et al. [2006] present systems to rapidly acquire the
reflectance field of a human face and subsequently fit a BRDF model
to the acquired data. Purely BRDF-based approaches, however,
cannot reproduce subsurface scattering.

More recent work on acquiring parameters of subsurface scattering
concentrates on individual scattering profiles, which requires struc-

tured illumination to observe the profiles. Jensen et al. [2001] use
a tightly-focused beam of light to produce well-defined, structured
illumination, which exposes the scattering profile at a single surface
point. Weyrich et al. [2006] measure scattering profiles using an
array of optical fibers, where one fiber is lit to confine illumination to
a small spot. The other receiving fibers provide a low-resolution es-
timate of the profile. The use of their device is limited to sufficiently
flat skin areas where the sensor can be placed. Tariq et al. [2006]
avoid this shortcoming by using projected stripe patterns, shifted
across a face, and observe the scattering response of a moving step
function of illumination. In our setup, we control incident illumi-
nation by attaching a black tape occluder to the skin. In addition,
we avoid having to measure individual scattering profiles at each
point of the skin by fixing the reduced scattering coefficient σ ′

s(λ ).
This choice is more physically accurate in contrast to the similarly
simplifying assumption of fixing skin translucency σ

−1
tr [Jensen and

Buhler 2002], as ours holds for the vast majority of structures found
in skin [Jacques 1998; Donner and Jensen 2006]. Other acquisition
methods to capture general heterogeneously scattering materials
require extensive acquisition times and do not lend themselves to in
vivo measurements of skin [Goesele et al. 2004; Tong et al. 2005;
Peers et al. 2006; Wang et al. 2007].

Rather than attempting to model reflectance directly, a common
approach is also to tabulate a particular skin sample (such as an
actor’s face) under different lighting conditions [Georghiades et al.
1999; Debevec et al. 2000; Borshukov and Lewis 2003; Cula et al.
2004; Hawkins et al. 2004; Wenger et al. 2005]. While these meth-
ods faithfully reproduce the measured skin’s reflectance, they do
not provide insight on how skin interacts with light. This insight
is valuable when developing digital characters, or when simulating
poses or conditions (such as changes in pigmentation) significantly
different from the captured data.

More specialized image-based methods exist that derive chro-
mophore concentrations from single pictures. Tsumura et al. [2003]
qualitatively estimate melanin and hemoglobin distributions in a
face using independent component analysis (ICA). The method is
based on a purely absorptive reflectance model that ignores scat-
tering and is used to vary the effect of melanin and hemoglobin in
the input image. Cotton et al. [1999] derive melanin distributions
from photographs by analyzing their color deviations from a model
based on Kubelka-Munk theory. Though this technique has gained
popularity in the medical physics community, the underlying model
is still effectively a BRDF, and cannot capture the lateral subsurface
transport of light. It is this subsurface transport that is critical to
reproducing the appearance of skin.

In practice, analysis methods have driven the development of new
reflection models, even as physically-based models help determine
the acquisition and analysis to be performed. Continuing in this
tradition, we design our measurement system around a physical
model, and use our measurements to derive guidelines for obtaining
physical model parameters from calibrated RGB images.

3 Background: Light Transport in Layered Translucent
Materials

Light transport in layered translucent materials is well-approximated
by the diffusion multipole model [Donner and Jensen 2005]. Given
absorption and reduced scattering coefficients σa and σ ′

s, and the
thicknesses of each of the layers, the multipole model uses sums of
contributions from point sources arranged in mirrored configurations
about each layer to compute reflectance and transmittance profiles.
These profiles are radially-symmetric, and assume the radiant exi-
tance from the homogeneous layer is diffuse. Note that these profiles
define the 2D radiant emittance over the surface given an input ray
of light.
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Given a two-layer translucent material, we denote its forward di-
rected diffuse reflectance and transmittance profiles as R+

12 and T+
12 .

We define the forward direction as the incident direction of light on
the surface of the material. The backward directed profiles are R−

12
and T−

12 . The total reflectance is the convolution of the incident flux
Φ at the surface of the material with its forward diffuse reflectance
profile

M(x,y) =
∫

∞

−∞

∫
∞

−∞

Φ(x′,y′, ~ω)R+
12(r

′′)dx′dy′ = Φ∗R+
12, (1)

where r =
√

x2 + y2, and r′′ =
√

(x− x′)2 +(y− y′)2.

The forward reflectance profile itself is composed of multiple terms
that capture the degree of inter-scattering between layers. Thus, R+

12
is the sum of the profile accounting for light that scatters only in the
top layer R+

1 , and the profile accounting for light that scatters from
the top layer into the lower layer, back into the top layer, and out of
the top layer at the surface

R+
12(r)=R+

1 (r)

+
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

T+
1 (r′)R+

2 (r′′)T−
1 (r′′′)dx′dy′dx′′dy′′

= R+
1 +T+

1 ∗R+
2 ,∗T−

1 ,

(2)

where r′ =
√

x′2 + y′2, and r′′′ =
√

(x− x′′)2 +(y− y′′)2. We de-
note this convolution between profiles with ∗. T−

1 is the back-
ward transmission profile of the top layer, and R+

2 is the forward
reflectance profile of the lower layer. This equation assumes that
light emitted from the material is either scattered directly from the
top layer, or scattered down into the bottom layer before returning
and exiting. Thus, it represents a single inter-scattering of light
between the layers.

Accounting for the full inter-scattering requires summing a series of
similar convolutions

Φ∗R+
12 = Φ∗R+

1 +Φ∗T+
1 ∗R+

2 ∗T−
1

+Φ∗T+
1 ∗R+

2 ∗R−
1 ∗R+

2 ∗T−
1

+Φ∗T+
1 ∗R+

2 ∗T−
1 ∗R+

2 ∗R−
1 ∗R+

2 ∗T−
1 + · · · .

= Φ∗
(
R+

1 +T+
1 ∗R+

2 ∗T−
1

+∗T+
1 ∗R+

2 ∗R−
1 ∗R+

2 ∗T−
1

+ ∗T+
1 ∗R+

2 ∗T−
1 ∗R+

2 ∗R−
1 ∗R+

2 ∗T−
1 + · · ·

)
.

(3)

Due to the associativity of convolution, it is more efficient to perform
the convolution with irradiance after the sum of layer convolutions
has been computed. Note that when the profiles in Equation 3 are
transformed into the Fourier domain, the resulting sum of pointwise
products is a geometric series, and reduces to a simple form that is
inexpensive to evaluate [Donner and Jensen 2005].

D’Eon et al. [2007] observed that a set of Gaussian functions pro-
vides an useful basis for accurately representing diffusion profiles.
By expressing each profile as a linear combination of k Gaussians of
variance vi,

R+
1 =

k

∑
i=1

wiG(vi), (4)

convolution by a non-separable profile R+
1 is efficently computed as

a sum of separable convolutions, where each can also be computed
hierachically starting with the result of the previous, narrower con-
volution. The convolution of two sum-of-Gaussian profiles reduces
to a polynomial multiplication when the appropriate Gaussian basis
is selected [2007] allowing very efficient evaluation of equation 3.

Figure 2: Heterogeneous light transport in our model. Multiple
layers each interact with light in different ways, and their optical
properties vary spatially. Light is also absorbed as it passes through
an infinitesimally thin absorbing layer between scattering layers.

Both the Fourier domain and Gaussian polynomial methods extend
trivially to more than two layers. This is done by computing the over-
all profiles of the first two layers, and using those as the responses
of a single top layer.

4 A Heterogeneous Reflectance Model

Many real translucent materials are inhomogeneous compositions
of elements with different properties, such as leaves, marble, and
skin. We account for varying parameters in two ways, first by
varying optical properties over the surfaces of layers, and second
by introducing thin absorbing layers between scattering layers (see
Figure 2).

In general, representing the heterogeneous transport of light would
require computing the pair-wise transport between each set of points
on the surface [Peers et al. 2006]. A common approximation is to
assume local homogeneity and fit to a simple model, where the resid-
ual becomes an albedo texture [Jensen and Buhler 2002; Weyrich
et al. 2006]. The dipole, however, is a poor choice for representing
materials with significant heterogeneity, as it approximates the trans-
port between points with a single radially-symmetric profile. This is
clearly evident across shadow boundaries, as shown in Figure 3.

4.1 Heterogeneity Through Inter-scattering

The multipole model assumes that materials are composed of homo-
geneous layers, that is, the optical properties of a layer are fixed over
its surface. Note that the layer profiles give the homogeneous light
transport between points on the surface.

If the properties of the layer vary slowly relative to the mean free
path of light in the layer, then we can make the assumption that
the local properties of the material are homogeneous. The exitant
radiance of the layer is approximately

L(~xo, ~ωo) ≈
∫

∞

0

∫
2π

fi(~xi, ~ωi)R~xo(r)L(xi, ~ωi) fo(~xo, ~ωo)d~ωid~xi (5)

where r = ||~xo −~xi||, and where fi and fo indicate the modulation
of light at the surface of the layer due to Fresnel effects or a BRDF.
Note that we use the profile at the point of exitant radiance R~xo
to predict the contribution of nearby points. This homogeneous
assumption allows the use of simple analytical models such as the
dipole and multipole to predict local light transport.

Convolving two homogeneous layers together to find their total
transmittance is a radially symmetric process and produces a homo-
geneous response. With the above formulation of spatially-varying
profiles, however, convolution of layer responses depends on the
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Figure 3: Renderings of a heterogeneous material (skin) with av-
erage homogeneous parameters (left), heterogeneous parameters
using our method (middle), and homogeneous parameters modu-
lated by an albedo texture (right). The top row shows fully lit images,
while the mideel and bottom row are lit by strips of light of different
intensity.). Note that although the middle images seem similar, clear
heterogeneities are visible in the brightly lit image, and are not
captured by the homogeneous model.

local position across the interface between the layers. For example,
the forward transmittance profile of two heterogeneous layers is

T+
12(x,y) =

∫
∞

−∞

∫
∞

−∞

T+
1,x′,y′(x− x′,y− y′)T+

2,x′,y′(x
′,y′)dx′dy′. (6)

This is because the incident flux on the lower layer takes the form
of a set of points from different profiles, each with different shape.
The resulting profile has a complex, sometimes discontinuous struc-
ture (see Figure 4). Compared to the radially symmetric convolution
of homogeneous layers in Equation 2, the full 2D convolution is
considerably more expensive to compute.

Just as in the case of homogeneous layers, light that scatters from the
top layer into the bottom layer may scatter back into the top layer.
Accounting for these heterogeneous inter-scattering events requires
evaluating Equation 3 in 2D. Using the sum-of-weighted-Gaussian
representation in Equation ??, however, keeps evaluation of these
convolutions efficient, as we discuss in Section 4.3.

Note that when a layer is highly scattering, light that propagates to
its adjoining layers does not spread very far, and conversely. Thus,
this approach of modeling layers works best when layers with high
frequency changes in properties are highly scattering, while those
with lower frequency variation may propagate light more with less
error. This is significantly more accurate than using just the dipole
model with an albedo texture, as the transport between points on the
surface now takes many paths.

Figure 3 demonstrates the differences in scattering between homo-
geneous and heterogeneous profiles. The first column and second
column shows the rendering of a flat patch of skin using average
homogeneous and heterogeneous parameters. The third column uses
an albedo texture derived from the first two images. In the second
row, the patches are lit with strips of light. Though the appearance

H
om

og
en

eo
us

 1e-30

 1e-20

 1e-10

 0  50  100  150  200  250

In
te

n
si

ty

Pixel

Homogeneous Scattering

One Layer
Two Layers

 1e-30

 1e-20

 1e-10

 0  50  100  150  200  250

In
te

n
si

ty

Pixel

Heterogeneous Scattering

H
et

er
og

en
eo

us

One Layer Two Layers

Figure 4: The false-color images to the left show homogeneous
(top) and heterogeneous (bottom) profiles. The left image shows
the result of convolving a 16x16 pixel input irradiance with one
profile, and the middle image shows the result after convolving with
a second profile. The plot to the right shows the center horizontal
scanline of each image. Note that there are significant differences,
even under the source illumination, between the homogeneous and
heterogeneous convolutions.

seems similar, when lit with brighter strips (bottom row), clear het-
erogeneities are visible using spatially-varying parameters, while
the albedo-mapped image retains its homogeneous characteristics.

Our formulation models the physical characteristics of real materials.
In skin, for example, the epidermis is thin and highly scattering, and
has the highest frequency variation of the skin layers. The same is
true of plant leaves, where the back side of the leaf has a thin, highly
scattering layer.

4.2 Inter-scattering Absorption
Real heterogeneous materials have additional types of heterogeneity,
such as localized areas of high absorption. We account for this form
of absorption by introducing an infinitesimally thin absorbing layer
between scattering layers. This absorbing layer modulates light that
scatters out of a scattering layer before it enters the next scattering
layer. This, however, presents a complication when convolving layer
profiles, as the result of each convolution in Equation 3 (except the
last of each term) is multiplied by the absorbing layer. The resulting
sum of 2D convolutions and products is no longer associative, and
Equation ?? becomes

Φ∗R+
12 = Φ∗R+

1 +
((((

Φ∗T+
1
)
A

)
∗R+

2
)
A

)
∗T−

1

+
((((((((

Φ∗T+
1
)
A

)
∗R+

2
)
A

)
∗R−

1
)
A

)
∗R+

2
)
A

)
∗R−

1 + · · · ,
(7)

where multiplication by the 2D absorption map A performs the ab-
sorption of the thin layer. As the convolution of a product is not the
product of convolutions, previous approaches for efficiently comput-
ing Equation 7 cannot be applied; each individual convolution must
be performed.

Since the parameter map P for the absorbing layer controls the
absorbance of the layer, the actual absorption as light passes through
the layer is

A(x,y) = e−P(x,y). (8)

4.3 Efficient Implementation
In previous work, since the profiles were homogeneous and radially
symmetric, Equations 3 and ?? could be efficiently precomputed and
stored as a single radially symmetric profile. Equation 7, however,
requires each 2D convolution to be performed in turn. Precompu-
tation of several 2D convolutions over an entire surface would be
prohibitively expensive to compute and store.
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Instead, we compute profiles on the fly when shading points on
the surface. We represent each profile by a set of weighted Gaus-
sians. Convolving the irradiance with a profile amounts to blurring
the irradiance by each Gaussian, and accumulating the weighted
result. Since we must evaluate a large number of convolutions to
evaluate Equation 7, efficiency and performance are of utmost im-
portance. As a Gaussian blur is separable, performing these blurs is
a task ideally suited for the parallelism of modern graphics hardware
(GPUs) [d’Eon et al. 2007].

To evaluate Equation 7, we represent irradiance incident at a point~xo
as a 2D texture, where each pixel represents light incident at a point
~xi. The location of~xi in the texture depends on the relative position
of the two points, and the local UV parametrization of the mesh.
Thus, the relative UV coordinates of ~xo and all its contributing ~xi
determine the world-space size of the texture.

Given a profile represented by the set of k Gaussians G = ∑
k
i=1 G(vi),

the convolution of the irradiance Φ with this profile is a weighted
sum of blurs of different widths

Φ∗G =
k

∑
i=1

wiG(vi)∗Φ (9)

Since a Gaussian blur is separable, however, this formulation leads
to an efficient method of convolution as a two-pass process. For each
Gaussian in the set, we blur the irradiance texture and accumulate
the weighted result.

Convolving two profiles is done in a similar fashion. We perform
each convolution in turn, starting with the irradiance and the first
forward reflectance profile. The results of the previous convolution
are then used as the input to the next. If there is an absorbing layer,
then the results of a convolution are multiplied by a discretized
absorption texture before becoming the input to the next set of blurs.

Note that although a convolution is a point-wise product in the
Fourier domain, the cost of a Fourier transform is O(n logn), where
n is the number of profiles samples. A separable blur, however, is
only O(n). Thus actually performing the convolutions brute-force is
more efficient.

We constrain the variances of the set of Gaussians to be integral
powers of an initial variance. With this formulation, we start with
the thinnest Gaussian, and the next wider blur in the set is easily
computed from the results of the previous one, as successive blurs
sum variances.

Note that the discretization of the irradiance requires a good UV
parametrization of the surface being rendered. We use the UV
coordinates of irradiance samples to determine the properties of the
layer at that point. Ideally, points that are close to each other in world
space should be near each other in UV space, and vice versa. This
parametrization is also necessary to determine the correct absorption
between layers in the local frame.

When computing transmittance profiles, however, the UV
parametrization between shading and lit points will have signifi-
cant error. This is because points on opposite sides of a thin surface
are likely to be far from each other in UV space. To account for this
discrepancy, we project the shading point to the far surface, and use
its UV coordinates along with those of the irradiance to determine
the blur frame. This approach is more general for complex geometry,
as opposed to always evaluating a translated reflectance profile, as
done in previous work.

This formulation of convolutions followed by multiplications gives
the flexibility needed to approximate the spatially varying properties
of materials, and account for the transmittance through thin absorb-
ing layers. These features make this model ideal for simulating the
reflectance of skin, which we discuss in the next Section.

5 Spectral Shading of Heterogeneous Skin

One of the most striking visual components of skin is its color, which
is caused by subsurface scattering. Light scatters among and is ab-
sorbed by skin’s structural and chemical constituents [Igarashi et al.
2005]. The absorption of light in skin is largely due to chromophores,
chemicals that absorb light. Scattering occurs from small-scale cel-
lular structures, collagen, and also from chromophores, as well as
high-frequency changes in index of refraction. This is generally
modeled at a high-level as scattering from particles [Jacques 1996].
Both scattering and absorption vary significantly over the visible
spectrum, as well as across the surface. This makes skin a good
candidate for rendering using the heterogeneous reflectance model
described in the previous section.

5.1 Skin Pigmentation
From the standpoint of pigmentation, skin is divided into roughly
two layers, the epidermis at the surface, with the dermis below. The
human epidermis contains several chromophores, but the most promi-
nent are melanin and carotene. Melanin acts as optical protection
from harmful UV radiation, while hemoglobin is the primary carrier
of oxygen in blood. Small amounts of carotene [Sayre and Black
1992] are also found in the epidermis, often dependant on diet, but
light absorption is dominated by melanin. In the dermis, hemoglobin
is the primary chromophore. Figure 7 shows the absorption spectra
of these chromophores.

Some pigmentation is focused between the epidermis and dermis.
Melanin, for example, is produced by cells at the base of the epi-
dermis, and thus has a significant concentration there [Matts et al.
2007] (see Figure 5). Artificial pigmentation, such as a tattoo, is
usually injected into the upper dermis to prevent the pigment from
dissipating as epidermal cells regenerate [Bernstein 2006]. These
forms of pigmentation can be handled as absorbing layers in our
heterogeneous model.

5.2 Spectral Skin Properties
Similarly to Donner and Jensen [2006], we model skin as a two-
layer translucent material, and compute the reflectance and trans-
mittance profiles based on the concentrations of their respective
chromophores. Note that these profiles are spectral.

The total spectral absorption with the above epidermal chromophores
is

σ
epi
a (λ ) = Cm

(
βmσ

em
a (λ )+(1−βm)σpm

a (λ )
)

Che

(
γeσ

oxy
a (λ )+(1− γe)σ

deoxy
a (λ )

)
+Cbσ

bc
a (λ )+(1−Cm −Che −Cb)σ

baseline
a

(10)

where λ is the wavelength of light in nanometers, Cm is the total
volume fraction of melanin, and βm blends between the two different
types of melanin, eumelanin σ em

a and pheomelanin σ
pm
a . Che is

the total volume fraction of hemoglobin, γe controls the relative
amounts of absorption from oxygenated σ

oxy
a and deoxygenated

σ
deoxy
a hemoglobin, and σbaseline

a is a baseline absorption of the
remaining skin tissue. σbc

a is the absorption of carotene. We include
hemoglobin in the epidermis of our model to simulate the effects
of increased blood flow, or erythema, which gives skin a reddish
appearance. See [Jacques et al. 2001] for tabulated versions of the
absorption spectra of the chromophores.

The total spectral dermis absorption is

σ
derm
a (λ ) = Chd

(
γd σ

oxy
a (λ )+(1− γd) σ

deoxy
a (λ )

)
+(1−Chd)σbaseline

a

(11)
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Parameter Description Typical range
Cm Melanin fraction 0−0.5
βm Melanin type blend 0−1
Che Hemoglobin fraction (epi) 0−0.05
Cbc Carotene fraction 0−0.05
Chd Hemoglobin fraction (dermis) 0−0.1
ρs Oiliness 0−1

Table 1: Physiological parameters describing skin reflectance in
our model. We use 2D parameter maps to define the parameters
above over a surface. Using Equations 10 and 11, these directly
determine the optical properties (σ ′

s and σa) of the skin layers.

where γd controls the oxygenation of the dermal hemoglobin.

We fix the reduced scattering coefficient σ ′
s of light in skin in our

model, describing it by the following power law

σ
′
s(λ )epi = 14.74λ

−0.22 +2.2×1011 ×λ
−4. (12)

where the scattering in the dermis is that of the epidermis reduced
by half.

For computing reflectance, we fix the thickness of the epidermis to
be 0.25mm, while the dermis is semi-infinite for reflectance. Also,
we fix the indices of refraction of the two layers to be 1.4 and 1.38.

To account for surface reflectance we use the Torrance-Sparrow
BRDF [1967], and scale its contribution by an “oiliness” factor ρs,
as described by Donner and Jensen [2006]. Table 1 summarizes the
parameters to the skin model.

5.3 Rendering Heterogeneous Skin
To render images of skin using our heterogeneous model, we use
2D parameter maps over a surface to control the values of the model
parameters in Table 1, as shown in Figure 1. Using these parameters
in Equations 10 and 11 gives the absorption coefficient σa (recall that
σ ′

s is fixed per wavelength) of the skin layers at each point on their
surfaces. We then use these optical properties to construct Gaussian
representations of each profile. We convolve these profiles on the
fly to compute the final reflectance using Equation 7 as described in
Section 4.3.

In addition to melanin in the epidermis, based on the observations
of [Matts et al. 2007], we assume that some fraction of melanin is
concentrated within an absorbing layer between the epidermis and
dermis. When computing Equation 7, we assume that an additional
1.75% absorbance is concentrated at each point in the absorbing
layer. We base this amount on our empirical observations.

To render thin materials, such as ears, we determine the actual
thickness of the dermis as discussed in Section 7. We then construct
a three layer material with a top epidermis, an thin inner dermis,
and a bottom epidermis, and compute transmittance profiles using
the multipole model of the three layer configuration. Note that this
potentially involves multiplying by both the front- and back-side
absorbance layers.

6 Reflectance Measurements

Our heterogeneous model has five parameters that control subsurface
scattering, only ρs is separate. One option for obtaining parame-
ters for the model is to turn to the medical literature: the optical
properties of skin have previously been measured and tabulated [van
Gemert et al. 1989; Tuchin 2000]. These tabulations, however, were
not acquired with graphics applications in mind, but intended to
define physiological parameter ranges of healthy and pathological
tissue. Choosing good values to achieve a certain desired visual look
is still a non-trivial task.

Figure 5: Cross sections of skin with varying amounts of melanin.
The samples have been stained to highlight the melanin distribu-
tion. From left to right, the samples represent light skin, moderately
pigmented skin, and heavily pigmented skin. Note that melanin is
distributed fairly evenly throughout the epidermis, with a concentra-
tion at the junction between the epidermis and dermis. Images used
with permission from [Matts et al. 2007].

Flash 30o

Gray Card

Camera
Polarizer

Positioner

Polarizer

Filter Wheel

Figure 6: Our measurement setup. Left: Flash inside its case (back
and top removed), facing the positioner ring with the gray card.
Filter wheel visible at top of case. Right: View onto camera and
flash polarizers.

To avoid manually picking model parameters, previous work has
inferred model parameters from RGB textures of skin [Jensen and
Buhler 2002; Donner and Jensen 2006], partially performing mea-
surements to constrain the respective fit [Weyrich et al. 2006]. As our
model comes with an increased number of parameters, these meth-
ods do not apply. Instead, we perform our own skin measurements
to derive representative parameters for our model. In Section 7.2
we show how these measurements can be used to find reasonable
constraints that allow our model to be fit to calibrated RGB data.

6.1 Design

Our design is inspired by the acquisition device used by Jensen
et al. [2001]: an SLR camera (Canon EOS 20D) observes a skin
sample under orthogonal incident illumination; the camera view
is 30◦ off-orthogonal to avoid retro-reflection. See Figure 6 for a
schematic. A photographic xenon flash (Canon 580 EX II) serves
as a light source. Crossed polarizers in front of flash and camera
largely eliminate surface reflection.

With five degrees of freedom at each surface point, however, it is not
possible to restrict measurements to three (RGB) channels alone, as
has been done by all previous skin studies in graphics. To allow for
discrimination of the model constituents, we measure at multiple,
narrow frequency bands. To this end, we subsequently place narrow
band-pass filters (Chesire Optical, Newport R© Optics) in front of
the camera flash. At 165 mm (6.5′′) distance to the skin sample,
the flash’s output modulated by the filters’ narrow spectrum still
provides enough radiant energy for imaging, while the 10 nm-wide
interference filters’ frequency shift of non-orthogonal rays stays
below 0.1 nm within a volume of interest of 29 mm (1.14′′) diameter.
Flash and filters, mounted in a filter wheel, are contained in a fixed
enclosure that eliminates stray light. Skin samples are positioned at
a fixed location in front of the setup, with a blackened metal ring
around this location aiding proper positioning.

We selected the filter bands based on simulations using our skin
model; we performed an exhaustive search for filter combinations
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Figure 7: Filters used for an optimal discrimination of the model
constituents overlayed on the absorption of chromophores used in
the model.

that provide an optimal signal-to-noise ratio with respect to the in-
trinsic model parameters. Note that due to wavelength-dependent
scattering in skin, it is not sufficient to solely consider the con-
stituents’ absorption spectra; the complete reflectance model must
be evaluated. Our filter choice also takes care to avoid the ragged
region around 420 nm in the spectrum of the xenon flash.

For maximum irradiance control we structure the incident illumina-
tion by affixing black electrical tape onto the skin, with a 7.5 mm
square window cut out of the tape. The camera observes the skin
through this window, and the boundary of the cut-out region serves
as an occluder modulating the incident illumination by a box func-
tion1.

For each filter, we acquire a reference image of a SpectralonTM re-
flectance target placed at the same location as the skin samples. Re-
lating subsequent measurements to these reference images calibrates
for incident flux Φ, for camera vignetting, and for the camera’s spec-
tral sensitivity. To track changes in the flash intensity, a 30% gray
card (x-rite) is statically mounted in the setup that is simultaneously
lit by the light source and observed by the camera throughout all
measurements.

Figure 7 shows the filter spectra used, overlaid with the spectra of
the model constituents.

6.2 Measurement Procedure
We position the taped skin sample in front of the measurement
apparatus, taking subsequent images, advancing the filter wheel after
each shot (F/10, exp 1/100, ISO 200–800, depending on wavelength).
The filter wheel also contains an opaque inset used for black-image
acquisition.

The cross-polarization filters out glossy surface reflection and single-
scattering events. Surface reflectance, however, also affects the
amount of light entering and exiting the skin and has therefore an
effect on the observed diffuse reflectance [Donner and Jensen 2005].
Jensen et al. [2001] assume a smooth surface in their measurements,
so that surface transmittance can be described by a transmissive Fres-
nel term Ft(~ω,η) = 1−Fr(~ω,η). For skin, with its varying oiliness
ρs, transmittance can differ from Ft by up to XX. We eliminate this
measurement uncertainty by applying a thin film of ultrasound gel
(Aquasonic R© Clear) to the skin. This is a clear gel with an index

1Note that this allows us to observe part of a line convolution of the
scattering profile along the tape edges, where skin areas closer to the occlud-
ing tape observe less light through scattering from nearby regions; in our
data-fitting process, however, we do not directly exploit this fact.

of refraction close to water that is designed to closely adhere to
skin. The gel remains glossy throughout the measurement procedure
and removes the influence of skin’s surface BRDF by inducing a
transmittance described by a smooth Fresnel term.

Before further processing, we resample the captured images within
the cut-out region. By determining the cut-out’s location for each
image separately, we implicitly compensate for potential subject
motion between subsequent images. A final image alignment step
further improves correspondence between the different wavelength
components.

6.3 Model Fit
The stack of images acquired from a skin patch represents a single,
multi-spectral image of that patch. We estimate model parameters
for each multi-spectral pixel using inverse rendering [Marschner
1998]. Starting from average skin parameters, a gradient-descent op-
timization subsequently renders the skin patch and alters the model
parameters to minimize the differences between the rendered patch
and the acquired image. We use a multi-spectral GPU implementa-
tion of our skin model that extends the rendering method of d’Eon
et al. [2007] as described in Section 7.

The inverse renderer simulates the incident illumination modulated
by the black-tape occluder and computes radiant exitance at each
pixel for each measured wavelength. The gradient descent simulta-
neously optimizes the parameter vector in each pixel, constantly es-
timating the objective function’s gradient from forward-differences.
By simultaneously evaluating all forward differences by rendering
the full patch, the scattering cross-talk between surface points implic-
itly couples the independent optimizations, leading to a consistent
solution of heterogeneous model parameters. The strong coupling
between pixels due to the scattering profile’s large support leads to a
comparatively fast convergence after typically 400 iterations.

6.4 Error Analysis
Great care has been taken to radiometrically calibrate all components.
Besides random camera noise, a few systematic error sources due to
the polarization potentially introduce a bias. The cross-polarization,
intended to eliminate surface reflection, may be imperfect, poten-
tially letting light leak through the crossed polarizers. We found,
however, that in our setting even mirror reflection is attenuated down
to noise level. The polarization itself adds further effects. From sys-
tematic measurements we derive that Spectralon’s reflectance varies
by ±5.27% between s- and p-polarization of the camera’s polarizer,
which must be taken into account when radiometrically calibrating
the system. In addition, we find that scattering in skin depolarizes
even less than Spectralon, which is an important observation, as pre-
vious work in graphics often relies on cross-polarization to transmit
exactly 50% of the diffuse reflectance. On a (gel treated) skin sample
that is reflecting away from the camera, to avoid glossy reflection
under parallel polarization we observe a polarization-dependent in-
tensity variation of ±19.96% around the average diffuse reflectance.
These biases are included in our calibration.

The radiometric accuracy has direct influence on the convergence of
the inverse rendering. With the proper calibration, inverse rendering
typically converges to a residual of below RMS 4% reflectance
within 400 iterations. Further iterations hardly reduce this error,
such that the remaining mismatch is due to noise and to potential
effects in the tissue that are not simulated by our model.

7 Results

We have implemented the heterogeneous shading model described in
the paper in two forms. The first is a GPU-only version that is limited
to simple geometry, shadows, and texture resolution. We have also
implemented a CPU version in a Monte Carlo ray tracer, but it is
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Figure 8: Changing skin parameters with mechanical deformation.
The example shows a reduction of blood flow (hemoglobin concen-
tration) at after clenching and releasing the hand.

limited by the convolution speed of the GPU. The GPU version
calculates the convolution of the shading points under all image
pixels in parallel, while the CPU version samples the irradiance in a
small area around the shading point.

The renderings in this section were performed on a Quad-Core Intel
Xeon 2.0GHz machine with two NVIDIA GeForce 8800GTX and
one GeForce 8800GT (G92) graphics cards. The GPU renderer
computes one image using a single GPU in about a second, while
the CPU version took about 30 minutes per image. We discuss the
limitations on efficiency of the CPU method in Section 7.3.

In both implementations, we represent each profile as a set of 18
Gaussians. The smallest variance in the set is 0.0001mm, and the
other Gaussians have increasing powers of this value, as discussed
in Section 4.3. We base the smallest size on the mean free path
length of light in the epidermis, which is about 0.01mm. Each of the
Gaussian weights are stored in a lookup table (LUT) indexed by σa,
as scattering is fixed in our skin model. Each LUT is 18x256 pixels,
where each column indexes the weights for a Gaussian of particular
variance, and the rows for that Gaussian’s value of σa. We have
found that 256 samples of σa spaced logarithmically is sufficient for
rendering skin. Note that for all images rendered in this paper, the
surface oiliness parameter ρr was fixed at 0.35.

We render images using 8 spectral samples, at wavelengths 400nm,
435nm, 470nm, 505nm, 540nm, 575nm, 610nm, and 645nm. We
have found this set to give results within 1% pixel error of 151
samples spaced every 2nm. Note that this is a different set of wave-
lengths than we use for acquisition, as that set is optimized to show
the differences between model parameters. The GPU version of
the renderer, however, uses the measurement wavelengths when
performing inverse rendering. We perform four iterations of inter-
scattering convolutions for blue light, and five for green and red
light, after analyzing the total spectral error based on the number
of inter-scattering iterations performed (e.g. the number of terms
of the sum in Equation 7). Figure 9 summarizes the error for skin
with minimal absorption, where error is highest. When rendering the
surface using the CPU renderer, we use irradiance and convolution
texture sizes of 128x128, and warp irradiance samples into it as
described in Section 4.3. Higher resolutions gave no appreciable
increase in quality.

7.1 Using the Model
Figure 8 shows images of the palm of the left hand before and after
undergoing a possible mechanical deformation (e.g. clenching the
and into a fist and then releasing) which forces blood to flow away
from the deformed areas. We simulate this effect by changing the
concentration of hemoglobin in our skin model. The parameter
maps used to generate the left image are shown in Figure 1. Two
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Figure 9: Spectral error depends on the number of inter-scattering
convolutions performed. We have found that using a small number of
iterations to compute the inter-scattering of light between layers is
sufficient to preserve over 99% of the spectral energy of the profiles.

Figure 10: Images of a hand with different pigmentation. Left:
Texture synthesis of real captured data simulates freckles over the
arm and wrist. The original data was taken from a person with red
hair, and the freckles contain high amounts of pheomelanin. Middle:
Using absorbing textures to create a tattoo on the back of the hand.
Note that the tattoo appears to be beneath the surface (where it
is). The colors of the tattoo are faded due to the scattering and
absorption of light in the epidermis. This is why tattoos often appear
blue. Right: Rendering using a more heavily pigmented dataset.

maps correspond to Note the simplicity of the maps; the complex
interaction of light is captured by the heterogeneous layered model.

Figure 10 demonstrates the use of our reflectance model to simulate
different types of pigmentation. The left image uses texture synthesis
to generate freckles over the hand and wrist. The original dataset was
measured from a person with red hair; the freckles are concentrations
of pheomelanin. The middle image demonstrates our model’s thin
absorbing layers between scattering layers. The pigment of the tattoo
is represented using eight maps, one for each spectral sample, to
control the amount of absorption between the skin layers. Note that
the tattoo appears faded. This is because the light passing through it
is attenuated from scattering and absorption in the epidermis. This
is also why veins appear blue. The right image (scar?)

Figure 11 shows an image of a back-lit ear transmitting light, with
parameter and absorption maps adding the effect of internal veins
and freckles. Here we sample the illumination normally, but project
the shade points to the lit side of the ear to obtain the convolved
irradiance as described in Section4.3.

7.2 Skin Measurements
To evaluate our model using actual chromophore concentrations of
real skin samples, we measured a number of skin patches across
different skin types. A measurement takes roughly 20 second; the
limiting factor is the manual advancing of the filter wheel.

The skin patches roughly cover 500x500 pixels in the camera image.
After bilinearly resampling them to 512x512, we finally downsam-
ple (box-filter) the patch to 256x256 for inverse rendering, which
provides a certain degree of noise-reduction; no other filtering is
applied.

Figure 12 shows a patch of skin that has been reconstructed with our
acquisition procedure. Figure 13 shows the eumelanin, pheomelanin
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Figure 13: Chromophore concentrations as derived from our measurements. (a) Asian-subcontinental, skin type VI, measured at the outside of
the lower arm. (b) Asian-subcontinental, skin type V, measured at the outside of the lower arm. (c) Caucasian, skin type II, vessel on the back
of the arm.

and hemoglobin distribution in this patch.

comparison of spectral sample images with the spectral photos

7.3 Discussion
Rendering time is currently dominated by performing Gaussian
blurs on the GPU for both implementations. Our method is memory-
bandwidth-limited due to texture accesses in the Gaussian blur ker-
nels. We have found that multiple GPUs in one machine improves
the speed of the convolutions nearly linearly. We do not use SLI
hardware, rather, we address each GPU independently in parallel.
As there is little communication between the CPU and GPU other
than control information (Gaussian width, scaling factors, etc.), our
implementation does not saturate the PCI-Express bus even with
three graphics cards in one machine. Thus, we expect our approach
to scale well as computer with multiple PCI-Express slots are be-
coming more commonly available.

Our CPU implementation currently samples irradiance and performs
convolutions for every shade point rendered. A more optimal solu-
tion would be to share convolution results with nearby shade points,
or cache them for later use.

We have performed measurements of several patches of skin from
different ethic groups, covering a range of

other things to put here? measurements? what we have learned?
we’ve measured things and found them to match what they should
be?

8 Discussion and Conclusions

Our model represents a tradeoff between variability and accuracy.

Model can be applied to other materials than skin, fairly general for
homogeneous transport in layered materials.
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transmittance using a reflectance profile. The veins and freckles are
controlled by parameter maps over the surface of the head and ear.
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Figure 12: Measured patch of skin with reconstruction. Top-Left:
Skin patch as captured in the acquisition device. Top-Right: Render-
ing using the model parameters estimated from this patch. Bottom:
Renderings under (spatially) varying illumination.
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RUSINKIEWICZ, S., AND DUTRÉ, P. 2006. A compact factored representation of
heterogeneous subsurface scattering. ACM Trans. Graphic. 25, 3, 746–753.

SAYRE, R. M., AND BLACK, H. S. 1992. Beta-carotene does not act as an optical
filter in skin. J. Photochemem. Photobiol. B: Biol. 12, 83–90.

STAM, J. 2001. An illumination model for a skin layer bounded by rough surfaces. In
Rendering Techniques, 39–52.

TARIQ, S., GARDNER, A., LLAMAS, I., JONES, A., DEBEVEC, P., AND TURK, G.
2006. Efficient estimation of spatially varying subsurface scattering parameters. In
Vision, Modeling, and Visualization.

TONG, X., WANG, J., LIN, S., GUO, B., AND YEUNG SHUM, H. 2005. Modeling and
rendering of quasi-homogeneous materials. ACM Trans. Graphic. 24, 3, 1054–1061.

TORRANCE, K., AND SPARROW, E. 1967. Theory for off-specular reflection from
roughened surfaces. J. Opt. Soc. Am. 57, 1104–1114.

TSUMURA, N., OJIMA, N., SATO, K., SHIRAISHI, M., SHIMIZU, H., NABESHIMA,
H., AKAZAKI, S., HORI, K., AND MIYAKE, Y. 2003. Image-based skin color and
texture analysis synthesis by extracting hemoglobin and melanin information in the
skin. ACM Trans. Graphic. 22, 3, 770–779.

TUCHIN, V. 2000. Tissue Optics: Light Scattering Methods and Instruments for
Medical Diagnosis. SPIE Press.

VAN GEMERT, M. J. C., JACQUES, S. L., STERENBORG, H. J. C. M., AND STAR,
W. M. 1989. Skin optics. IEEE Trans. Biomed. Eng. 36, 12, 1146–1154.

WANG, J., ZHAO, S., TONG, X., STEPHEN LIN, Z. L., DONG, Y., GUO, B., AND
SHUM, H. 2007. Modeling and rendering of heterogeneous translucent materi-
als using the diffusion equation. Technical Report MSR-TR-2007-59, Microsoft
Research.

WENGER, A., GARDNER, A., TCHOU, C., UNGER, J., HAWKINS, T., AND DE-
BEVEC, P. 2005. Performance relighting and reflectance transformation with
time-multiplexed illumination. ACM Transactions on Graphics 24, 3, 756–764.

10



Online Submission ID: 0461

WEYRICH, T., MATUSIK, W., PFISTER, H., BICKEL, B., DONNER, C., TU, C.,
MCANDLESS, J., LEE, J., NGAN, A., JENSEN, H. W., AND GROSS, M. 2006.
Analysis of human faces using a measurement-based skin reflectance model. ACM
Trans. Graphic. 25, 1013–1024.

11


