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Abstract

This paper presents a novel technique for authenticating
physical documents based on random, naturally occurring
imperfections in paper texture. We introduce a new method
for measuring the three-dimensional surface of a page
using only a commodity scanner and without modifying
the document in any way. From this physical feature, we
generate a concise fingerprint that uniquely identifies the
document. Our technique is secure against counterfeiting
and robust to harsh handling; it can be used even before
any content is printed on a page. It has a wide range of
applications, including detecting forged currency and tickets,
authenticating passports, and halting counterfeit goods.
Document identification could also be applied maliciously to
de-anonymize printed surveys and to compromise the secrecy
of paper ballots.

1. Introduction and Roadmap

Viewed up close, the surface of a sheet of paper is not
perfectly flat but is a tangled mat of wood fibers with a
rich three-dimensional texture that is highly random and
difficult to reproduce. In this study, we introduce a new
method for identifying a physical document—and verifying
its authenticity—by measuring this unique natural structure.
We show that paper texture can be estimated using only
a flatbed scanner coupled with appropriate software, and
that this feature is robust against rough treatment—such as
printing or scribbling on the document or soaking it in water—
and adversarial counterfeiting. Under normal conditions, our
technique can identify documents with near-perfect accuracy
and a negligible false positive rate.

It has long been known how to authenticate the content
printed on a page by using cryptographic methods such as
digital signatures. We address a different problem: how to
authenticate the paper itself. For some kinds of documents,
such as currency and tickets, it matters not only that the
content is unaltered but also that the document is a genuine
original rather than a copy or forgery. Physical document
authentication has many applications, which we discuss
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Figure 1. Since the surface of a sheet of paper is not
perfectly flat, a scanner will produce a different image
depending on the orientation of the page. The light
reaching the sensor depends on the relative angles of
the light source and surface normal, (a). A 10 mm tall
region of a document scanned from top to bottom, (b),
appears different from the same region scanned from left
to right, (c). By combining (b) and (c) we can estimate
the 3-D texture.

in Sections 7 and 8. Some of these applications may be
harmful; for example, our method allows re-identification of
supposedly anonymous surveys and paper ballots.

In contrast with previous efforts, our technique measures
paper’s 3-D texture, requires no exotic equipment, produces
a concise document fingerprint, does not require modifying
the document, and may be applied to blank paper before
content is printed. Previous systems lack one or more of these
properties. For example, Laser Surface Authentication [1]
requires a costly laser microscope to image paper texture,
while the technique proposed by Zhu et al. [2], which focuses
on ink splatter caused by randomness in the printing process,
requires the paper to be printed with known content prior to
fingerprinting. We discuss these and other related work in
Section 2.

The physical document authentication technique we pro-
pose is a three-stage process culminating in a robust and
secure fingerprint. In the first stage, we scan the original
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document and estimate its surface texture. Scanners normally
measure only the color of a document, but by scanning the
paper several times at different orientations, we can estimate
the shape of the surface (see Figure 1). In the second stage,
we condense the surface texture into a concise feature vector,
which robustly identifies the page. The third and final stage
uses a secure sketch to generate a fingerprint that reveals little
information about the feature vector. The fingerprint can be
printed on the document (e.g., as a 2-D bar code) or stored
in a database. The verification procedure is similar to the
fingerprinting process, with a different final stage that verifies
that the generated feature vector is correct. We describe each
of these stages in detail in Section 3.

We designed our technique to satisfy several security and
usability goals:
• Uniqueness Every document should be identifiable

and distinguishable from all others.
• Consistency A fingerprint should be verifiable by

multiple parties over the lifetime of the document.
• Conciseness Document fingerprints should be short

and easily computable.
• Robustness It should be possible to verify a finger-

printed document even if it has been subjected to harsh
treatment.

• Resistance to Forgery It should be very difficult or
costly for an adversary to forge a document by coercing
a second document to express the same fingerprint as
an original.

Sections 4–6 evaluate our system in terms of these goals.

The most recent version of this paper can be found on our
web site, http://citp.princeton.edu/paper/.

2. Related Work

The Fiberfingerprint system of Metois et al. first introduced
the notion of using surface texture to uniquely identify a
document [3]. Employing a custom device, Fiberfingerprint
measures “inhomogeneities in the substrate” of a document,
from which a unique identifier is derived. The system employs
alignment marks that are added to the document in order
to orient the verification system, and requires a specialized
hardware device rather than a commodity scanner.

Laser Surface Authentication is a technique that measures
the texture of a page using a high-powered laser micro-
scope [1]. Creating and verifying fingerprints in their system
requires access to this specialized device, which may be
prohibitively expensive for many users. Their system also
requires that the verifier be online, which may rule out
applications such as third-party ticket verification.

A recent patent application by Cowburn and Buchanan de-
scribes using a commodity scanner to identify documents [4].
This method does not measure the normal vector field of a
document, but rather uses scans from multiple orientations

in order to extract other additional information. The feature
vector used by Cowburn and Buchanan is not concise, and
their fingerprint is not secure. An adversary with access to
the fingerprint is able to easily discover the surface texture
of the document, possibly making forgery less difficult.

Zhu et al. focus on identifying “non-repeatable randomness
existing in the printing process” [2]. They generate a
fingerprint from the random ink splatter that occurs around
the edges of any features printed on a page. Unlike our
scheme, their method can only be applied after a document
has been printed. Furthermore, their implementation requires
modifying the original document by printing a known target
pattern.

Our method is an improvement over previous work because
we measure the surface texture of a document without the
requirement of expensive equipment. We utilize the unique
fiber structure as identified and relied upon by Metois et al.,
Cowburn and Buchanan, and Zhu et al. but do so without
modifying the document in any way. Our method allows
documents to be fingerprinted before or after content is
printed. In fact, fingerprinting and tracking using our system
can begin during the paper manufacturing process. We have
also developed methods for hiding the target feature vector
through the use of a secure sketch. This means a potential
counterfeiter cannot learn what features he needs to reproduce
from the fingerprint alone but would need access to the
original document to even attempt a forgery.

3. Fingerprinting Process

Our fingerprinting process allows for registration and
validation of a sheet of paper without the participation of a
central registration authority. Depending on the application, a
document’s fingerprint can be stored in a database for future
verification, or it can be printed on the document along with
a digital signature, creating a self-verifying original. The
fingerprint can be used to ascertain whether two documents
share the same feature vector without revealing the registered
feature vector itself.

The registration and validation processes are quite similar,
as shown in Figure 2. In the registration process, we scan a
document, estimate its three-dimensional surface texture, and
generate a feature vector V that represents the document’s
unique texture. We consider two documents to be the same
if they have similar feature vectors. To protect the feature
vector and inhibit forgeries that might seek to reproduce
an exact feature vector, the fingerprint contains only a one-
way hash H(V) of the extracted feature vector. To achieve
robustness against measurement errors in the feature vector,
the registration process derives error-correction information
from V and stores it in the fingerprint in the form of a
secure sketch. The fingerprint also contains a random seed
to initialize the pseudorandom number generator used to
compute the feature vector, as described in Section 3.2.
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Figure 2. Registration and validation pipelines. Registration: Our method creates a fingerprint that consists of a hash
value, error correction information, and a random seed. Validation: A document is authenticated if a newly computed
hash value is identical to the one stored in the fingerprint. The stored error correction information is used to correct
potentially faulty bits in the feature vector.

The validation process has no access to the original
feature vector. Validating a document requires determining
a document’s feature vector anew, using the seed stored in
the fingerprint. Validation assumes a potentially flawed raw
feature vector Ṽ

′
and uses the secure sketch to obtain an

error corrected Ṽ, as described in Section 3.3. The candidate
document is considered valid if this feature vector maps to
the same hash value stored in the fingerprint—that is, if
H(Ṽ) = H(V). The remainder of this section discusses the
registration and validation pipeline in detail.

3.1. Estimating document surface texture

To capture the surface texture of a document, we scan it
at four orientations: 0◦, 90◦, 180◦, and 270◦. This allows
recovery of the surface orientation for every sampled surface
point. Our procedure assumes that paper is perfectly diffuse,
which is an assumption that largely holds for near-orthogonal
observation. Diffuse materials reflect a portion of the incident
light that is proportional to the cosine of the angle between
the direction of incidence and the surface normal—that is,
proportional to the dot product of these normalized directions.
This property is commonly exploited in photometric stereo
to reconstruct surface normals from multiple images under
varying illumination by a point light source [5]. Similarly,
we apply photometric stereo to the four captured scans.
Flatbed scanners, however, contain a linear light source,
rather than a point source, which disallows the application
of traditional photometric stereo. Brown et al. recently
demonstrated how normals can be derived from flatbed scans
under multiple orientations [6]. Their method, however, relies
on an extensive calibration procedure, which would make
it impractical for authentication purposes. Instead, we will

Figure 3. Difference image between two 1200 DPI scans
showing the surface texture measured by the scanner in
the y direction. Actual size: “sum”.

derive a novel photometric stereo solution for flatbed scanners,
which provides us with information on surface orientation
without the need for dedicated calibration.

Let us define a coordinate system for the paper and the
scanner so that the paper lies in the xy-plane, the z-axis points
away from the flatbed of the scanner, and the scanner’s linear
light source is parallel to the x-axis. We approximate this light
source by a line segment extending from x1 to x2. We further
assume that the light source is offset with respect to the line
on the paper imaged by the CCD sensor (see Figure 1(a))
by oy in the y-direction and by oz in the z-direction.

Each point on the paper has a normal n and a diffuse color,
or albedo, ρ . Without loss of generality, we concentrate on
a surface point at the origin of our coordinate system. The
observed intensity of such a surface point is then:

I = ρ

∫ x2

x1

〈
n,

(x,oy,oz)>

‖(x,oy,oz)>‖3

〉
dx , (1)

which is the integral over all light diffusely reflected off that
surface point and originating from points (x,oy,oz)> along
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the linear light source. As every flatbed scanner is designed
for even illumination, any limiting effects near ends of the
light source are negligible and we shall ignore the integral
limits in the remainder of this discussion.

Scanning the same surface point a second time with the
paper rotated by 180◦ displaces the light source from oy to
−oy. Subtracting the resulting two scans I0◦ and I180◦ from
each other leads to:

dy = I0◦ − I180◦

= ρ

∫ 〈
n,

(x,oy,oz)>

‖(x,oy,oz)>‖3 −
(x,−oy,oz)>

‖(x,−oy,oz)>‖3

〉
dx

= ρ

∫ 〈
n,

(0,2oy,0)>

‖(x,oy,oz)>‖3

〉
dx

= ny ρ

∫ 2oy

‖(x,oy,oz)>‖3 dx

= ny ρs . (2)

That is, the difference dy directly yields the y component ny
of the surface normal n, multiplied by the albedo ρ and a
fixed constant s that is dependent on the scanner geometry
only. Analogously, dx = I270◦ − I90◦ = nx ρs. With four scans
we can determine each surface normal’s projection into to
xy-plane, n2 = (nx,ny), up to a scale. The factor s is assumed
to be fairly constant across the page, and the remaining scale
is given by the local surface reflectance ρ of the paper at
any given location.

Application of equation (2) requires precise alignment of
each surface point across all scans. To reduce the effect
of alignment imprecision and to isolate frequencies of the
document that are stable across scans and different scanners,
we apply a low-pass filter to the document and down-sample
it. In our experiments we scanned each document at 1200
SPI (samples per inch) and down-sampled it by a factor of
eight, resulting in an effective resolution of 150 SPI.

After processing the four scans of a document, we recover
the surface texture as a two-dimensional vector field with d =
(dx,dy)> = ρsn2 defined at each location of the document.

3.2. Computing the feature vector

From this vector field d we determine the feature vector
of the document. A good feature vector captures unique
characteristics of a document, while at the same time being
concise. We model the feature vector V as an N-bit vector
of independent bits fi whose values are derived from the
surface normals of the document.

In contrast to previous approaches, we do not extract a
feature vector from a single region of the document, but we
compute the feature vector from a collection of representative
subsections, patches, of the document. For documents down-
sampled to 150 SPI, we choose square patches of 8×8
samples, centered at a series of random locations pi. For even

spacing we draw these locations from a Voronoi distribution
[7]: we use the random seed stored in the fingerprint to
initialize P pseudorandom start locations on the page and
use Lloyd’s Voronoi relaxation to obtain a set of locations
distributed evenly across the document, as shown in Figure 4.

In principle one could now directly compare the patches
of a document A to corresponding patches in a document
B in order to verify two documents as being the same. The
disadvantages are that this requires access to the patches of B
when verifying A, which would require an amount of storage
prohibitive for offline applications, and, more importantly,
that it would reveal the original document’s structure to a
forger. Hence, we derive a compressed feature vector and
store its hash along with a secure sketch to hide the feature
vector from an adversary.

Each patch contains 64 2-D samples di, i = 1, . . . ,64,
which we stack to create a patch vector p ∈ IR128. Each
patch contributes T bits to the feature vector. We compute
these feature bits fi, i = 1, . . . ,T , by subsequently comparing
the patch vector to T template vectors ti. The template
vectors are a set of pseudorandomly chosen orthonormal
vectors in IR128 generated using the same seed that is used
to determine patch locations: the ti are initialized with vector
components drawn from a N(0,1) distribution, followed by
Gram-Schmidt orthonormalization. Each template vector can
be interpreted as a template patch of 8×8 2-vectors denoting
surface orientation.

The comparison is performed by correlating the patch
vector p and each template vector ti; i.e., by computing
the dot product 〈p, ti〉. Positive correlation means that
surface orientations in the patch and the template patch
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Figure 4. Sample Voronoi distribution of 100 points in the
unit square. Voronoi distributions give relatively uniform
coverage of a region, while simultaneously ensuring no
overlap of patches.
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agree; negative correlation denotes mostly opposing surface
orientations. The respective feature bit is determined by the
sign of the correlation:

fi =
1+ sign(〈p, ti〉)

2
. (3)

See Algorithm 1 for further illustration.

V = bool[PT ]
Retrieve surface orientation vectors of document
Extract P patches based on Voronoi distribution
for p = 1 to P do

template = generate new set of T pseudo-
random orthonormal template vectors

for i = 1 to T do
c = 〈 patch[p], template[i] 〉
f(p−1)P+i = TRUE if c > 0

end for
end for

Algorithm 1: Feature vector generation.

The number of independent bits that can be extracted
from a patch in this way is limited and depends on the
amount of information contained in a patch. A standard
tool to characterize this amount of information is principal
component analysis (PCA) [8]. We performed PCA on a large
set of randomly chosen patches from different documents.
The results show that for 8×8-patches 75% of the information
can be expressed with only 32 principal components; that
is, within a 32-dimensional subspace. We hence decided to
restrict ourselves to T = 32 of 128 possible orthonormal
template vectors, as additional template vectors are likely
to produce increasingly correlated feature bits. We further
choose 100 patches, P = 100, leading to a feature vector of
3,200 bits for each document.

3.3. Creating the document fingerprint

From the feature vector we can create a document
fingerprint that can be used to authenticate the document
without revealing information about the document. The
fingerprinting method should be both concise and robust to
errors. This situation is similar to that of biometrics, where a
user provides a value Ṽ which is close to, but not identical
to the registered value V (e.g., the Hamming distance is
relatively small). Additionally, providing an adversary with
the full feature vector may not be desirable, as it provides a
blueprint for potential forgery.

A document fingerprint consists of a hash of the feature
vector H(V), where H is a collision-resistant cryptographic
hash function, along with a secure sketch ss(V) following
the ideas of Dodis et al. [9] and Juels and Wattenberg [10].
The secure sketch allows the system to correct any errors that
may occur in the candidate Ṽ, assuming Ṽ is close enough

to V, without revealing V to an adversary who does not have
any information about V.

Suppose the registered value for a document is an N-bit
value V, and we wish to accept any Ṽ within Hamming
distance δN of V. The secure sketch proposed by Juels and
Wattenberg chooses a random codeword x from an error-
correcting code of length N that can correct δN errors, and
stores ss(V) = V⊕ x. To recover V from a candidate Ṽ, the
system calculates x̂ = ss(V)⊕ Ṽ, corrects x̂ to the nearest
codeword, and verifies that H(V) = H(x⊕ ss(V)). If V and
Ṽ have Hamming distance less than δN, the system correctly
outputs V.

Dodis et al. [9] show that the number of bits of information
about the fingerprint revealed by the secure sketch is N− k,
where k = logK is the dimension of the error-correcting code
used in the secure sketch when it has K codewords. Thus, in
order to maximize the security of the system for a fixed N,
the error-correcting code should have as high a dimension k
as possible.

Low-Density Parity Check (LDPC) codes, along with turbo
codes, are among the strongest error-correcting codes in use,
thanks to efficient decoding algorithms developed in the last
two decades. In our implementation, we used the LDPC
library written by Neal [11]. LDPC codes are well-suited
to this application because they work well on large block
sizes and in practice can often correctly decode beyond
the minimum distance of the code [12]. In addition, the
LDPC decoding algorithm can take into account a confidence
level specified for each individual bit to further improve the
performance of the code. In our case, this confidence level
can be calculated from the magnitude of the dot product of
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Figure 6. Fraction of fingerprints successfully decoded
for varying fingerprint error rates using LDPC codes of
different dimensions k.

the template vector with the patch vector. The correspondence
between the two is graphed in Figure 7.

The length of our feature vector is N = 3200 bits. We
experimented with codes of suitable dimension to correct bit
error rates between δ = 10%, allowing correct identification
of all types of paper we experimented with under ideal
conditions (see Figure 8), and δ = 30%, suitable to identify
documents under less-ideal conditions such as soaking and
scribbling (see Figure 9). For the case of decoding under
ideal conditions, a code of dimension k = 1000 and N = 3200
is sufficient to correctly verify all test documents, with no
false positives. For the case of decoding under less ideal
conditions, a code of dimension k = 300 and N = 3200
sufficed to correctly verify 95% of all test documents, with
no false positives. See Figure 6 for a summary of these
results.

The feature vector length can be adjusted to suit the needs
of the application (and the expected document treatment
conditions) by increasing or reducing the number of patches.
Longer feature vectors provide a higher level of accuracy
when distinguishing two documents, especially under harsh
treatment, but require increased storage. We chose N = 3200
bits as our feature vector length to ensure that it would fit
in a 2-D barcode.

4. Robustness

Section 3 describes a process for registration and validation
of a document fingerprint. In this section we evaluate docu-
ment fingerprints across different types of paper, including
normal copy paper (Boise Aspen 50), university letterhead
with a visible watermark, and index cards. We also evaluate
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Figure 7. Correspondence between dot product magni-
tude and error probability during validation. (Fit to normal
distribution with µ=0 and σ=0.1314.)

the fragility of a document fingerprint under various treatment
conditions. Our goal is to test whether our technique typically
validates different observations of the same document (true
positives) and rejects pairs of observations of different
documents (true negatives), while rarely validating pairs
of observations of different documents (false positives) or
rejecting different observations of the same document (false
negatives).

Our experiments show that a fingerprint can be found for
a variety of different types of paper. Unless otherwise noted,
each experiment began with a document scanned at 1200
DPI on an Epson Perfection v700 scanner. Each test focused
on a 3×3 inch square in the center of the page.1

For each test, we captured five observations of a set of five
documents, for a total of 25 observations. Each observation
consisted of four scans taken at 0◦, 90◦, 180◦, and 270◦

that we used to estimate surface normals. We expect no two
scans of the same document to be exactly alike due to slight
variations in placement on the scanner, random noise, and
other uncontrollable variables in the process.

The amount of error tolerated in a matching fingerprint can
be adjusted by choosing an appropriate error-correcting code
during the fingerprinting process described in Section 3. The
number of bits that can be corrected by the code should be
determined by the needs of the application, as it establishes

1. In our robustness experiments, we used a printed box on the test pages
to identify the region to be fingerprinted and to align the different scans.
However, alignment could be accomplished by other means, such as by
relying on the boundaries of the page or other printed material, or by simply
recording a few patches at high resolution [13]. Different sets of patches
should be used for alignment and verification, because using the same
patches could increase the false positive rate.
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a tradeoff between the security of the system and the relative
likelihood (or harm) of a false positive or false negative.

4.1. Ideal handling conditions

As a baseline test, we measured the frequency of correct
and incorrect validation and rejection under ideal handling
conditions, when we expect no document degradation.

We began with 25 observations (5 from each of 5 docu-
ments). We chose 40 random seeds and sampled a fingerprint
from each observation for each seed, following the process
described in Section 3. We made

(25
2

)
= 300 comparisons

for each seed, yielding a total of 12,000 comparisons.
For each comparison, we computed the Hamming distance

between the two fingerprints. These distances are summarized
for the 12,000 comparisons by the histogram shown in the
top graph in Figure 8. Under non-adversarial conditions,
document fingerprints of normal copy paper differ, on average,
in only 99 (3.1%) of the 3200 bits. In contrast, as one would
expect, the average Hamming distance for fingerprints made
from observations of different documents is 50% of the
bits. These distributions are well-separated; the maximum
Hamming distance between feature vectors from the same
document is 177, while the minimum distance between
feature vectors of different documents is 1490. An error
tolerance anywhere in this range should give no false positives
and no false negatives for these tests. We found similar results
for index cards and university letterhead; see Figure 8.

The distributions for the “same” fingerprint comparison
tests and “different” fingerprint comparison tests seem to be
reasonably approximated by a normal distribution. Fitting
Gaussian curves to this data, we can find a summary statistic,
Egan’s sensitivity index for Gaussian distributions of signal
and noise with unequal variances, given by:

ds = 2(µ2−µ1)/(σ1 +σ2) (4)

where µ1, µ2, σ1 and σ2 are the means and standard
deviations of the distributions [14]. For this experiment,
ds = 52.0. To give some intuition about the significance
of this statistic, the two Gaussians intersect at a Hamming
distance of 731 bits; the heights of the curves are such that
the chance of a single comparison resulting in either a false
positive or false negative is 1 in 10148. If we reduce the
feature vector length from N = 3200 bits to 1600, 800, or
400 bits, the probability of such errors is 1 in 1096, 1 in 1057,
or 1 in 1035, respectively.

We repeated these experiments on different scanner models
and found similar results. When comparing a document
fingerprinted on one model and verified on another, results
are slightly worse.2

2. We chose several of the parameters of our algorithm (e.g., the
downsample factor and size of the patches) based on preliminary experiments
using the Epson v700 scanner. The optimal settings for verification of
documents using other scanner models may vary.

4.2. Non-ideal handling conditions

The previous experiments were performed under ideal han-
dling conditions. We performed additional tests to ascertain
the robustness of fingerprints when the document is subjected
to less-than-ideal conditions. These tests included scribbling
on the paper, printing on it with ink, and soaking the page
in water.

Scribbling. We first scanned a set of five blank documents,
then scanned them again after scribbling over them with a
pen. In each document the scribble was unique, covering an
average of 8% of the test region. In this test, 25 pre-scribble
observations were compared against their 25 post-scribble
counterparts, for a total of 625 pairs. We used 40 different
fingerprint samples per document to yield a total of 25,000
comparisons. The Hamming distances resulting from these
comparisons are plotted in the top graph in Figure 9. The
sensitivity index in this case is lower (ds = 28.8), although the
curves remain quite well-separated. With a decision threshold
of 1130 bit errors in the fingerprint, the chance of a false
positive or false negative is 1 in 1047.

Printing. In this experiment we printed single-spaced text
in 12 pt. Times New Roman lettering over the test region,
covering approximately 13% of the area with ink. The
distributions shown in the middle graph of Figure 9 were
obtained as in the scribble test. Even in this experiment, in
which most patches used for the fingerprint were partially
covered by ink, the sensitivity index is 26.1 and the chance
of a false positive or false negative at the crossover is 1 in
1038.

Wetting and drying. The bottom graph in Figure 9 shows
the resiliency of document fingerprints after the document
was submerged in water for five minutes. We dried each test
document and ironed it until it was as flat as possible. Using
the same evaluation protocol as for the scribble and printing
tests, we found that documents could still be validated with
100% reliability, even with this fairly extreme mistreatment
of the page (ds = 33.3).

These experiments demonstrate that our fingerprinting
method is robust when a document is handled under certain
rough conditions. The ability to identify a document before
and after it is printed on, scribbled on, or soaked in water
has many potential applications.

5. Security

The security of our method relies on the inability of an
attacker to reproduce the document’s surface, either because
he does not know what features to produce or because he
cannot recreate the normal vectors at the required scale. The
threat model of each application is determined by several
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Figure 8. Distributions of Hamming distances between
fingerprints for three paper types: copy paper (top), index
cards (middle), and letterhead (bottom). In all graphs,
the curve on the left depicts the distribution for scans of
the same document, while the curve on the right gives
the distribution for different documents.
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Figure 9. Distributions of Hamming distances after
subjecting documents to non-ideal treatments: scribbling
(top), printing (middle), and soaking in water (bottom).
The curves remain well separated even under these
adverse conditions.
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factors: the availability of an original to the attacker, whether
verification is performed online or offline, and whether the
verification device is trusted. Under the most common threat
models, our method should prevent an attacker from forging
a copy of an original.

Performing verification online or offline results in different
considerations. Here “online” means that the verification
device can communicate with a remote trusted server which
can store data and perform computations; “offline” means
that the verification device cannot communicate, although it
can be preprogrammed with a limited amount of information
such as a constant number of cryptographic keys. Online
verification of a document has a straightforward solution,
while offline verification requires security tradeoffs.

5.1. Online verification

Online verification need not reveal in advance the patch
locations that will be analyzed. This forces an attacker to
reproduce the entire surface of a document before presenting
it for verification. In one approach, the verification server
requests complete raw scans of the document at each of four
orientations, which the server uses to perform the verification
algorithm. Under this construction, the verification server
does not reveal the chosen patches.

In an alternative approach, the verification server provides
a fresh pseudorandom challenge to the client, and the client
uses the challenge to seed a pseudorandom generator which is
used to pick the patches and templates used in the verification
algorithm. The client then computes the feature vector and
sends it to the server. The server, having computed the same
feature vector on its stored scans of the original document,
verifies that the two feature vectors are similar enough.

In this threat model an attacker does not know a priori
which patch locations on a document will be sampled. This
forces an attacker to reproduce the surface texture of the
document at each sample point in order to pass a counterfeit
as an original.

5.2. Offline verification

The security of offline verification depends on whether
the verification client is trusted and on the availability of
an original to the attacker. In the offline case, we assume
that the fingerprint of the legitimate original document is
either pre-stored on the client or is printed onto the document
(perhaps as a 2-D barcode) along with the authority’s digital
signature of the fingerprint. In either case, the client device
checks the document against a known fingerprint.

5.2.1. Offline: trusted device. Currency and ticket coun-
terfeit detection at banks and concerts are two important
examples of offline verification with a trusted device. By

“trusted” we mean that the device outputs a Boolean match/no-
match result but does not leak any other information.

The secret information stored in the device could be the
public key of the registration entity. The seed stored in the
document fingerprint could be encrypted under the secret
key of the registration entity. Therefore, knowledge of the
fingerprint for a document does not reveal the patch locations.
The hash of the feature vector could also be signed by the
registration entity, preferably using a separate key. This allows
only trusted devices to determine patch locations and verify
the authenticity of a document. No access to the registration
entity is required, provided that the device has knowledge of
the decryption and verification keys of the registration entity.

In this threat model the adversary does not know which
patches will be analyzed. This forces the attacker to recreate
the surface normals across the entire document to ensure
verification of the document.

5.2.2. Offline: untrusted device, no access to original. In
the next case, the verification device is offline and untrusted
(i.e., it might leak everything it knows to the attacker) and
the attacker has not seen the original document that he is
trying to forge. In this case, the attacker cannot forge the
document because he does not know anything useful about
the normal field that he must create. At most, he knows the
fingerprint (if it is stored in the device) but this does not
help him because the fingerprint is a secure sketch.

5.2.3. Offline: untrusted device, access to original. The
final case is the most challenging one, where the verification
device is offline and untrusted, and the attacker has access to
an original document that he wants to copy. Because there are
no secrets from the attacker—he sees the original document
including anything printed on it, and he knows the full state
of the device—the attacker knows exactly which patches will
be used for verification and how the feature vector will be
computed from those patches. The attacker’s only task is to
make a document that will generate a feature vector close
enough to the original. Whether the attacker can do this is
the subject of the next section.

6. Forging a Document

Suppose an attacker has seen an original document and
wants to create a second document that will pass verification
as the original. The attacker will start with an arbitrary piece
of paper which, by assumption, will have a very different
feature vector from the original. He will then try to modify
the target paper so that its feature vector is close to that
of the original document. To do this, the attacker needs to
make fine-grained modifications to the document’s surface
normals. This might be done via lithography or photographic
techniques, but these will be expensive and will probably
require special equipment. The most effective, economical
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way to control the surface, we believe, is to print on the
document.

Equation (2) shows that the fingerprinted vector (dx,dy)
contains additional factors s and ρ . The scanner-dependent
factor s can be assumed to be fairly constant across the page
and hence has no influence on the sign of the correlation
results in the feature vector generation. The remaining scale
is given by the local surface reflectance ρ of the paper at a
given location, which should be stable across multiple scans.
On empty paper it is nearly constant; in the presence of
print, ρ is greatly attenuated, which lessens the influence of
the printed portion onto the correlation result. The adversary
can try to control bits of the feature vector by printing dark
ink at selected points in order to reduce their influence in
the correlation calculations. Besides reducing ρ , printing at
a point tends to flatten the document surface, as shown in
Figure 3.

An adversary who aims at forging a document might
try to leverage these effects by printing a set of carefully
placed dots, either to cause the surface texture of a candidate
document to express the same fingerprint as an original,
or to down-weight unfavorable contributions to the patch
correlation. To do this the forger must overcome two hurdles:
printing dots on the page at desirable locations and/or printing
dots with favorable surface normal vectors. Dark ink on a
document would directly affect reflectivity, while light ink
might solely change the normal vectors at a specific location.
We assume that the adversary uses commercially available
equipment and is able to print dots in any color from black
to white. He has less control over the exact shape of the
dots, which varies by printing technology and type of paper.

We conducted experiments to characterize the ability of a
forger to precisely control the effect of a printed pattern. We
measured the effective resolution—the number of distinct
printable dots—for a high-end office printer, a Xerox Phaser
8550, with a nominal resolution of 2400x2400 DPI. The
effective resolution is limited by dot gain, which causes
printed dots to become larger than intended (see Figure
10) due to factors such as the viscosity of the ink and the
absorbency of the paper. The smallest dots that the test printer
could produce on a normal piece of copy paper are 1/240
inch, or 20x20 samples when scanned at 4800 SPI. This
limits the effective resolution to 240 DPI. On the other hand,
the positional accuracy of the printer seems closer to the rated
2400 DPI. We conclude that a forger could use commodity
printers to print dots with positional accuracy similar to what
commodity scanners can measure but size much greater than
the scanner’s pixels.

Because printed dots typically span more than one sample
in a patch, printing a dot at a specific location affects the
neighboring surface normal vectors in unpredictable and
uncontrollable ways. Due to paper variations as well as
limited precision in the placement and viscosity of ink, the
forger does not have precise control over the normal vectors

Figure 10. The smallest dots that can be produced by
our test printer are 1/240 inch—20 samples wide in this
4800 SPI scan—despite the printer’s nominal 2400 DPI
positional accuracy.

caused by a dot. We performed an experiment where we
printed a series of black dots in a region of the document.
We identified the black dots and measured the normal vectors
in the surrounding region. For each printed dot, the desired
normal vector of a location occurred on only one point of
the surface.

The bottom-line question is how many degrees of freedom
the adversary has in controllably modifying the normal vector
field in a patch. Given the linear transformation used to
determine each feature vector bit, the adversary will likely
be able to achieve a desired set of feature vector values if
he has enough degrees of freedom.

If there are N feature vector bits, and each bit is computed
as the sign of the correlation of the normal field with a
random vector field, then a truly random normal field value
would match all N feature vector bits with probability 2−N .
However, it is likely that the feature vector bits are not fully
independent. Although we have some evidence about the
degree of independence (see, e.g., Figure 5), we do not have
a precise estimate of how much entropy is encoded in the
feature vector.

We are thus left with an open question: does the amount
of information in a patch, as encoded in a feature vector,
exceed the adversary’s ability to inject information into the
patch? If we knew the answer to this question, we could
state with some confidence whether an adversary could forge
a document in the most favorable case (for the adversary),
where the adversary sees the original document and the
verification device is offline and untrusted. Unfortunately, we
have to leave this question for future work.
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7. Applications

There are a large number of applications that could
benefit from the ability to uniquely identify a document.
Many situations where physical possession of an item must
be verified or authentication of an item is required could
fruitfully employ our technique. Currency, ticket, and art
counterfeit detection, as well as verification of product
packaging are some of the applications where physical
document authentication is desirable.

Counterfeit currency detection is one obvious application.
The financial impact of counterfeit currency is large. Esti-
mates of annual global revenue loss range from $250- to
$500 billion [15], [16]. The ability to authenticate bills could
change the way currency is produced and fraud is detected.
Such a system would begin during currency production. The
government would generate a fingerprint for each bill. This
fingerprint could be stored in a database, along with the bill’s
serial number, or the government could digitally sign the
fingerprint and print the fingerprint and signature on the bill.
Any party wishing to verify a particular bill would scan the
bill and verify that the fingerprint matched the one signed
by the government. The authentication of a bill could be
performed offline or online. Businesses and banks accepting
large cash deposits could verify the currency was legitimate
before completing the transaction. Offline authentication
could be performed provided that the verification device
had the public key of the currency issuer.

Ticket forgery at major concerts and sporting events is
another large black-market business. Counterfeit event passes
were widespread at the 2008 Beijing Olympics [17], and
a British website recently sold more than $2.5 million in
fake tickets [18]. The ability for purchasers to verify the
authenticity of tickets prior to purchase could greatly reduce
the prevalence of online ticket fraud. Trust in ticket purchases
on websites such as Stub Hub and eBay could be dramatically
increased if the seller had to prove access to the item being
auctioned or sold. Ticket clearing houses such as Ticketmaster
could maintain an online database of fingerprints for all
purchased tickets. Any party selling a ticket could scan and
upload the ticket to Ticketmaster and receive verification of
authenticity.

Forgery of artwork is a black-market business where the
application of our technique may not be initially obvious.
European police estimate that over half of the works in
international markets are forgeries [19]. One family of art
forgers was able to make $2 million before they were
caught. The ability of art forgers to reproduce the individual
brush strokes of a work makes authenticating paintings
increasingly difficult. In the best forgeries, art verifiers must
sometimes rely on the chain of custody of the work in order
to authenticate it [20]. However, we believe that it would
be difficult to duplicate features of the canvas (down to the
detailed arrangement of the weave) upon which the work is

painted. Thus art authenticity or forgery might be detectable
by applying a technique like ours to the canvas, most probably
on the back side of the painting.

Lottery tickets are similar to currency except that players
need not be aware of a fingerprinting technique at all. In
order for a lottery winner to collect on their winnings, the
ticket must be verified by the lottery authority. The fingerprint
of a winning ticket need not be printed on the document at
all. Fingerprints of all possible winning lottery tickets can
be privately maintained, and any claimants can be required
to produce the actual winning ticket, with correctly verified
fingerprint, in order to collect their winnings.

The accurate identification of paper based product pack-
aging could benefit from this technique as well. When
inspecting cargo, customs officials often inspect the contents
of packages to weed out counterfeit goods. We can increase
confidence in package contents by authenticating a product’s
packaging. If the packaging of a product is legitimate, then
the contents of the package have a much higher likelihood
of being authentic.

8. Privacy Implications

The feasibility of paper-based authentication demonstrates
that some undesirable attacks are possible. Because our
results do not modify the paper in any way, there is no way to
detect, by inspecting a piece of paper, whether its fingerprint
might have been recorded in advance by an adversary. This
fact violates the traditional assumption that pieces of paper
cannot easily be traced without the addition of distinguishing
marks. Even unopened sheaves of blank printer paper might in
principle have been fingerprinted at the factory. Applications
such as paper-based voting, in which the secrecy of individual
ballots is important, are challenged by our results.

For example, consider an optical-scan voting system in
which voters fill out paper ballots. In such a system, the
secrecy of ballots relies on the assumption that individual
paper ballots are indistinguishable. Our work shows that this
assumption may not be valid.

A corrupt official could scan the blank ballots in advance
and record a unique fingerprint for each ballot in the stack.
If ballots are given out to voters in a predictable order (e.g.,
from the top of the stack down) and the order of voters is
recorded, as it is in many polling places, or observable by the
attacker, then ballots can be re-identified after the election.
Even worse, because pre-scanning leaves no evidence on
the ballots themselves, a mere rumor that someone might
have scanned the ballots in advance would be very difficult
to disprove, and such a rumor would make coercion and
vote-buying more credible.

More generally, the ability to re-identify ordinary sheets
of paper casts doubt on any purportedly private information
gathering process that relies on paper forms. “Anonymous”
surveys or reporting systems may not in fact be anonymous.
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Though it has long been possible to track sheets of
paper using subtle chemical markers or “invisible ink,” these
methods require some level of special expertise, and the
presence of markers leaves evidence of the attack. Our
research shows that an attacker armed with only ordinary
equipment—a commodity scanner—is able to re-identify
paper reliably without leaving any telltale marks.

9. Conclusion and Future Work

Our work shows that ordinary pieces of paper can be
fingerprinted and later identified using commodity desktop
scanners. The technique we developed functions like a
“biometric” for paper and allows original documents to be
securely and reliably distinguished from copies or forgeries.

At least two questions remain to be answered in future
work. First, in the threat model where the adversary has
access to the original document and the fingerprint, we do
not know for certain that a clever adversary cannot forge
a copy of the document with a high-resolution printer. Our
initial work could not determine conclusively whether an
adversary who can use a good printer will have enough
degrees of freedom in modifying a document to make the
document match a known fingerprint. Second, while we
conjecture that our method can be applied to other materials
such as fabric, more testing is needed to verify this, and
special methods might be needed for some materials. We
leave both of these questions for future work.

Our results are a tribute to the resolution of today’s
scanners. Future scanners will capture ever more detailed
images of paper documents, eventually allowing individual
wood fibers to be imaged clearly. The security of our methods
against forgery, in cases where the adversary has full access
to information, will depend ultimately on a race between the
resolution of the printers that can create patterns on a page,
and the resolution of the scanners that can observe patterns.
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Appendix

Section 3 introduces a process for fingerprinting and
verifying the fingerprint of a document. In this appendix
we briefly outline some alternative strategies that might be
desirable under different criteria for robustness or different
levels of concern about forgery.

Using albedo versus normals. Because the high-resolution
paper scans shown in figures throughout this paper reveal
obvious color variation in addition to surface texture, perhaps
a more straightforward approach would be to use the albedo
(color) of the page as the basis for a fingerprint, rather than, or
in addition to, the shape. Indeed, our initial implementations
explored this approach, using a single scan (which combines
albedo and normal information) to construct the fingerprint
of a document. This approach is simpler and offers the
substantial benefit that the document can be fingerprinted or
verified more quickly, through a single scan.

The intensities of most of the pixels in a scanned page are
modeled well by a truncated normal distribution, centered
around the “white” color. To use this data as the basis
for a fingerprint, we simply construct the vector p as the
concatenation of these intensities from a given patch. For
example, an 8×8 patch would yield a vector p ∈ IR64. The
fingerprint is then extracted from a collection of patches as
described in Algorithm 1.

We did not pursue this approach because we believe this
form of fingerprint may not resist forgers who use very
light ink to print a desired pattern on the page. Another
drawback is that any black ink on the page, which lies well
outside the roughly-normal distribution of intensities found in
blank paper, contributes to a very strong negative value in p,
introducing a bias in the dot products for the patch. Thus, any
value outside the range of the truncated normal distribution
must be zeroed out before constructing the fingerprint. This
provides another opportunity for a forger to deliberately zero
out regions of the patch with the goal of flipping bits towards
a desired fingerprint. These attacks might be difficult to carry
out in practice, since they require excellent registration in the
printing process. Therefore, albedo-based fingerprints may
be suitable for applications where some added risk of forgery
is an acceptable tradeoff for increased speed and simplicity.

Patch-pair comparisons. Recall from Algorithm 1 that the
vector p contributes K bits to the overall fingerprint by taking
the signs of the dot product of p and a series of ortho-normal
template vectors. We have also considered (and implemented)
an alternate version of the algorithm where the bits of the
fingerprint are taken to be the signs of the dot products of
pairs of patches p and q. The naı̈ve version divides the pool
of patch positions into pairs and computes one bit of the
feature vector from each pair. Unfortunately that approach
allows an attacker to tweak each pair in turn independently.
A more robust version considers bits from all patch pairs
(p,q) where p 6= q. For example, for 64 patches each patch
would participate in 63 bits, and this scheme could generate(64

2

)
= 2016 total bits.

In the case where a forger has a copy of an original
document and therefore knows the fingerprint he is trying to
reproduce (Section 5.2.3), this formulation has the advantage
that the bits of the fingerprint are more tightly bound than
those of the template vectors. Any attack on a single bit—for
example, printing on a patch—is likely to impinge on the
other (62) bits affected by that patch. Thus, a forger would
have to solve an optimization problem to figure out how best
to perform the attack.

However, the bits of the fingerprint generated from all patch
pairs seem to be less independent than the bits generated
by the template vectors. Preliminary experiments similar to
those described in Section 4 indicate that “all-pairs” bits are
mostly independent, but not as independent as the “template”
bits. Since the arguments in Section 5.2.2 for security against
“blind” attackers rely on bit independence, we generally prefer
the “template” scheme.

Short fingerprints with no error-correcting information.
Section 3.2 describes a process for generating fingerprints
composed of a hash of 3200 or more bits concatenated
with some error correction bits. For some applications
requiring less security, fewer feature vector bits may be used.
Suppose only 100 bits are used, and further suppose that the
application tends to produce fewer bit errors (say 15% or less).
In such scenarios an alternate approach would be to simply
record the secure hash of those bits. An attacker, without
the benefit of the original, is forced to guess among 2100 bit
sequences, checking guesses against the hash. Unfortunately,
this leaves the naı̈ve authentication process with no way to
do error correction other than to guess among the roughly
1017 strings within Hamming distance of 15 of the sequence
extracted from a page—easier, but also daunting.

Fortunately, there is a better approach for the authentication
process. Recall that the bits of the fingerprint are taken as
the signs of a series of dot products (patches and templates).
We have observed that these dot products are well-modeled
by samples from a truncated normal distribution. Moreover,
we have also observed that the flipped bits mostly come
from dot products near zero, and that the bit-flipping process
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seems to be well-modeled by the addition of “noise” also
selected from a truncated normal distribution (with smaller
standard deviation than that of the “signal”). With this model
in hand, the verification process can search for bit strings
similar to the extracted fingerprint while taking into account
which bits are more likely to have flipped. Specifically, the
process flips bits at random with probability relative to the
likelihood that the bit has flipped, each time checking against
the secure hash. We simulated this approach and found that
about 90% of the time it will find the correct string within
106 guesses for the example distribution described above.

The benefits of this approach are that it is simple to
implement and provides no information to an attacker in
the form of error-correction bits. The main disadvantages
are that it does not scale well to longer bit sequences and
that the stochastic nature of the algorithm provides only
probabilistic guarantees of running time. Therefore, it would
likely be used only in conjunction with other approaches.
For example, an application might attempt this method for
offline verification and fall back to an online method in cases
when it fails.
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