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Figure 1: Our model approximates heterogeneous light transport in skin through the inter-scattering of light between layers. Shown are
hand-drawn spatially-varying parameter maps of two scattering layers, and of an infinitesimally thin absorbing layer between them. The
maps have been scaled in intensity (10x for melanin, 20x for hemoglobin) to show detail. Given this simple input, our method renders
heterogeneous and volumetric effects that cannot be simulated using previous methods.

Abstract
We introduce a layered, heterogeneous spectral reflectance model
for human skin. The model captures the inter-scattering of light
among layers, each of which may have an independent set of
spatially-varying absorption and scattering parameters. For greater
physical accuracy and control, we introduce an infinitesimally thin
absorbing layer between scattering layers. To obtain parameters
for our model, we use a novel acquisition method that begins with
multi-spectral photographs. By using an inverse rendering tech-
nique, along with known chromophore spectra, we optimize for the
best set of parameters for each pixel of a patch. Our method finds
close matches to a wide variety of inputs with low residual error.

We apply our model to faithfully reproduce the complex vari-
ations in skin pigmentation. This is in contrast to most previous
work, which assumes that skin is homogeneous or composed of ho-
mogeneous layers. We demonstrate the accuracy and flexibility of
our model by creating complex skin visual effects such as veins, tat-
toos, rashes, and freckles, which would be difficult to author using
only albedo textures at the skin’s outer surface. Also, by varying the
parameters to our model, we simulate effects from external forces,
such as visible changes in blood flow within the skin due to external
pressure.
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1 Introduction

Human skin exhibits a striking range of appearance due to physi-
ological and structural variations across its surface and within its
layers. This heterogeneity may occur naturally, such as freckles,
splotches, veins, or rashes, or be introduced artificially via exter-
nal forces (e.g. pressure causing blood to increase or decrease) or
pigmentation such as tattoos. When building shading models to
describe, and designing methods to acquire, skin’s appearance, it is
imperative to take these variations into account.

Understanding the appearance of skin is particularly challenging,
as skin reflectance is dominated by subsurface scattering [Igarashi
et al. 2005]. In addition, the spectral reflectance of skin is complex
due to its many chemical constituents and structural variation [van
Gemert et al. 1989]. Existing skin models, such as those based on
the diffusion approximation [Jensen et al. 2001; Donner and Jensen
2005], generally rely on homogeneous approximations for both ren-
dering and acquisition. To give the impression of heterogeneity,
they rely on an approximate translucency modulated by a surface
albedo texture [Jensen and Buhler 2002; Hery 2003]. Acquiring
or generating albedo textures for use under complex and dynamic
lighting conditions or during physiological changes in skin, how-
ever, remains a difficult problem.

To address these challenges, we introduce a layered, heteroge-
neous reflectance model for skin (Section 4). Our model is based
on recent work on multi-layered translucent materials [Donner and
Jensen 2005], but instead of computing simple profiles for mate-
rials, we use this layered light transport to model heterogeneous
scattering of light. Though we assume local homogeneity around
a particular point, we apply the spatially-varying properties of the
layers as light scatters between them. This allows our model to cap-
ture spatial variation without applying albedo textures to the skin’s
outer surface. Instead, we drive our model with intuitive parameter
maps over the surface of the individual scattering layers, and allow
thin absorbing layers between the scattering layers. We describe an
efficient rendering method, based on applying multiple Gaussian
blurs to the irradiance (Section 4.3).

We apply our model to capturing and reproducing skin appear-
ance (Section 5). We use our physically-inspired skin model with
multiple layers and heterogeneous distributions of chromophores



(pigments and dyes) among them. We describe a novel technique
for recovering maps of these properties from multi-spectral images
of real skin (Section 6). Our acquisition setup uses a digital camera,
flash, and narrow-band color filters. Parameter maps are recovered
using inverse rendering, assuming known chromophore absorption
spectra. This method is versatile, and we obtain representative chro-
mophore distributions over a wide range of skin types and body
regions.

We evaluate our methods by synthesizing realistic images of
skin, as illustrated in Figure 1. We also demonstrate how to simulate
physiological changes in skin by modifying the maps that drive the
model parameters. We show the effect of heterogeneity and eval-
uate our acquisition method, demonstrating skin renderings from
acquired data.

2 Previous Work
The reflectance of translucent materials, and skin in particular, has
received considerable attention in computer graphics. Here we fo-
cus on the work related to shading models and reflectance measure-
ments, as they relate to our proposed methods. A thorough survey
of techniques is presented by Igarashi et al. [2005].

2.1 Reflectance models

Reflectance models for skin range from simple BRDF approxima-
tions to the scattering of light [Hanrahan and Krueger 1993; Stam
2001], to comprehensive models that simulate small-scale anatom-
ical and physiological detail [Krishnaswamy and Baranoski 2004].
The former rely on 1D approximations to light transport, and hence
do not capture the characteristic subsurface scattering of translucent
materials. Models that rely on an accurate volumetric light trans-
port simulation are typically too complex and too slow for prac-
tical applications in graphics. Models based on the diffusion ap-
proximation offer a compromise between accuracy and complexity.
Jensen et al. [2001] introduced the diffusion dipole approximation
along with a simple technique for measuring optical parameters of
materials, including two samples of skin. The method is limited
to homogeneous, semi-infinite slabs with constant scattering and
absorption properties.

Despite these limitations, methods using the dipole model to
approximate the appearance of heterogeneous materials are often
employed. Jensen and Buhler [2002] and Héry [2003] fix one pa-
rameter (translucency) of the model and vary another parameter to
match a given albedo texture. Others have used the dipole model
with fully spatially varying parameters [Tariq et al. 2006], but this
use of the model in the presence of heterogeneity, particularly when
there are large variations in parameters within small areas, is not
well defined. All of these approaches assume that the transport of
light between two points on the material depends only on a sin-
gle set of homogeneous parameters. Weyrich et al. [2006] use a
modulation texture on top of the homogeneous scattering process,
which renders faithfully under uniform lighting. Such modulation
textures, however, produce incorrect results under structured illu-
mination, as we show in Section 4.

For rendering thin slabs and multi-layered translucent materi-
als, Donner and Jensen [2005] introduced the diffusion multipole
approximation. Although this model more accurately captures the
reflectance of translucent layered materials, it is difficult to obtain
optical parameters for specific materials. The multipole model was
later applied to create a spectral shading model specifically for
skin [Donner and Jensen 2006], which uses a small set of chro-
mophore parameters to control overall skin appearance. Spatial
variations across the surface, however, are still approximated with
an albedo modulation texture. D’Eon et al. [2007] have recently
implemented the multipole model to run on modern graphics hard-
ware. Though this method allows interactive rendering of layered
translucent materials, it still uses the albedo texture approximation.

More general heterogeneous BSSRDF models have been devel-
oped with the specific goal of obtaining model parameters from
measurements [Goesele et al. 2004; Tong et al. 2005; Peers et al.
2006]. These models capture the relationship between incident and
exitant light, but ignore the underlying physical and physiological
structure of the material. For skin, it is particularly valuable to
understand the relationship between structure, pigmentation, and
reflectance, as this allows the derivation of physical models for pre-
dicting the appearance of arbitrary samples of skin. Wang et al.
[2007] acquire a volumetric representation of heterogeneously scat-
tering materials. They describe a numerical method for approxi-
mating heterogeneous diffusion on the GPU, but require a complex
discretization of the geometry into a coupled polygrid.

2.2 Skin Analysis

Early work that acquired and analyzed skin reflectance is based on
pure BRDF models. Dana et al. [1999] and Marschner et al. [1999]
use a camera and a light source to acquire images of skin under
different angles of incidence and reflection. Debevec et al. [2000]
and Weyrich et al. [2006] use parallel hardware to rapidly acquire
the reflectance field of a human face and subsequently fit a BRDF
model to the acquired data. Purely BRDF-based approaches, how-
ever, cannot reproduce subsurface scattering.

More recent work on acquiring parameters of subsurface scatter-
ing concentrates on radial scattering profiles, which requires struc-
tured illumination to observe the profiles. Jensen et al. [2001] use
a tightly-focused beam of light to produce well-defined, structured
illumination, which exposes the scattering profile around a single
surface point. Weyrich et al. [2006] measure similar scattering pro-
files using point illumination and a sensor array of optical fibers.
The use of a contact device, however, limits applicability to flat
skin areas where the probe can be placed. Tariq et al. [2006] avoid
this shortcoming by projecting stripe patterns on a face, shifting
them through time, and observing the resulting scattering response
of a moving step function of illumination. Ghosh et al. [2008] have
concurrently with this work used structured illumination to capture
and reproduce the layered reflectance of faces. In our setup, we
control incident illumination by attaching a black tape occluder to
the skin. In addition, we avoid having to measure individual scatter-
ing profiles at each point of the skin by fixing the reduced scattering
coefficient σ

′
s(λ). This choice is more physically accurate than the

similarly simplifying assumption of fixing the effective transport
length σ

−1
tr [Jensen and Buhler 2002], as it holds for the vast major-

ity of structures found in skin [Jacques 1998; Donner and Jensen
2006]. Other acquisition methods to capture general, heteroge-
neously scattering materials require extensive acquisition times and
do not lend themselves to measurements of skin in vivo [Goesele
et al. 2004; Tong et al. 2005; Peers et al. 2006; Wang et al. 2007].

Rather than modeling reflectance from first principles, a com-
mon approach is also to tabulate a particular skin sample (such
as an actor’s face) under different lighting conditions [Georghiades
et al. 1999; Debevec et al. 2000; Borshukov and Lewis 2003; Cula
et al. 2004; Hawkins et al. 2004; Wenger et al. 2005]. While these
methods faithfully reproduce the measured skin’s reflectance, they
do not provide insight on how skin interacts with light. This insight
is valuable when developing digital characters, or when simulating
poses or conditions (such as changes in pigmentation) significantly
different from the captured data.

More specialized image-based methods derive chromophore
concentrations from single images. Tsumura et al. [2003] qualita-
tively estimate melanin and hemoglobin distributions in a face using
independent component analysis (ICA). This method is based on a
purely absorptive reflectance model that ignores the influence of
scattering and depth on color. Cotton et al. [1999] derive melanin
distributions from photographs by analyzing color deviations from
a model based on Kubelka-Munk theory. Though this technique has



gained popularity in the medical physics community, the underly-
ing model is still effectively a BRDF, and cannot capture the lateral
subsurface transport of light. It is this subsurface transport that is
critical to reproducing the appearance of skin.

Often, reflectance models and acquisition methods have been
developed in parallel. Continuing in this tradition, we design our
measurement system around a physically-based model, and use our
measurements to derive guidelines for parameter choice.

3 Background: Layered Translucent Materials

Given absorption and reduced scattering coefficients σa and σ
′
s, and

the thicknesses of the layers, the diffusion multipole model [Donner
and Jensen 2005] uses sums of contributions from point sources
arranged in mirrored configurations about each layer to compute
reflectance and transmittance profiles. These profiles are radially
symmetric, and assume the radiant exitance from the homogeneous
layer is diffuse. Note that these profiles define the 2D radiant emit-
tance over the surface given an input ray of light. We will later
extend this formulation to generate 2D heterogeneous profiles.

Given a two-layer translucent material, we denote its reflectance
and transmittance profiles as R+

12, T +
12 , R−12 and T−12 . The + and −

indicate whether light is propagating deeper into (+) or out of (−)
the material before it scatters. The total radiant emittance is the
convolution of the incident flux Φ at the surface of the material
with its forward diffuse reflectance profile:

M(x, y) =
∫∫

Φ(x′, y′,~ω) R+
12(x−x′, y−y′) dx′ dy′ = Φ ∗ R+

12. (1)

The forward reflectance profile is itself composed of multiple terms
that capture the degree of inter-scattering between layers. Thus, R+

12
includes the sum of the profile accounting for light that scatters only
in the top layer R+

1 , and the convolution of the profiles accounting
for light that scatters from the top layer into the lower layer, back
into the top layer, and out of the top layer at the surface:

R+
12(x, y) = R+

1 (x, y) +
∫∫∫∫

T +
1 (x′, y′) R+

2 (x′−x′′, y′−y′′)

· T−1 (x−x′′, y−y′′) dx′ dy′ dx′′ dy′′

+ · · · = R+
1 + T +

1 ∗ R+
2 ∗ T−1 + · · · (2)

where T−1 is the backward transmission profile of the top layer,
and R+

2 is the forward reflectance profile of the lower layer. This
equation assumes that light emitted from the material is either scat-
tered directly from the top layer, or scattered down into the bottom
layer before returning and exiting. Thus, it represents a single inter-
scattering of light between the layers.

Accounting for the full inter-scattering of light requires summing
a series of convolutions:

Φ ∗ R+
12 = Φ ∗ (R+

1 + T +
1 ∗ R+

2 ∗ T−1 + T +
1 ∗ R+

2 ∗ R−1 ∗ R+
2 ∗ T−1

+ T +
1 ∗ R+

2 ∗ R−1 ∗ R+
2 ∗ R−1 ∗ R+

2 ∗ T−1 + · · · ). (3)

Due to the associativity of convolution, it is more efficient to per-
form the convolution with irradiance after the sum of layer convo-
lutions has been computed. Note that when the profiles in (3) are
transformed into the Fourier domain, the resulting sum of point-
wise products is a geometric series, and reduces to a simple form
that is inexpensive to evaluate when the profiles are radially sym-
metric [Donner and Jensen 2005].

D’Eon et al. [2007] observed that a set of Gaussian functions
provides a useful basis for accurately representing radially sym-
metric diffusion profiles. By expressing each profile as a linear
combination of k Gaussians of variance vi:

R+
1 =

k

∑
i=1

wi G(vi), (4)

Figure 2: Cross-sections of skin with varying amounts of melanin.
The samples have been stained to highlight the melanin distribu-
tion. From left to right, the samples represent light skin, moderately
pigmented skin, and heavily pigmented skin. Note that melanin is
distributed fairly evenly throughout the epidermis, with a concen-
tration at the junction between the epidermis and dermis. Images
used with permission from [Matts et al. 2007].

convolution by a non-separable profile R+
1 is efficiently computed

as a sum of separable convolutions.

4 A Heterogeneous Reflectance Model for Skin
One of the most striking visual components of skin is its color,
caused by subsurface scattering. Light scatters among and is ab-
sorbed by skin’s structural and chemical constituents [Igarashi et al.
2005]. The absorption of light in skin is largely due to chro-
mophores, chemicals that selectively absorb different wavelengths
of light. Scattering occurs from small-scale cellular structures, col-
lagen, chromophores, as well as high-frequency changes in index
of refraction. This is generally modeled at the macroscopic level as
scattering from particles [Jacques 1996]. Both scattering and ab-
sorption vary significantly through the visible spectrum and across
the surface.

From the standpoint of pigmentation, skin is roughly divided
into two layers: the epidermis at the surface, with the dermis be-
low. Some pigmentation is focused in a narrow region between the
epidermis and dermis [Matts et al. 2007]. Melanin, for example,
is produced by cells at the base of the epidermis, and thus has a
significant concentration there (see Figure 2). Artificial pigmenta-
tion, such as in a tattoo, is usually injected into the upper dermis
to prevent the pigment from dissipating as epidermal cells regener-
ate [Bernstein 2006].

We model skin as a two-layer heterogeneous material, and ac-
count for inhomogeneous pigmentation in skin in two ways: by
varying optical properties over the surfaces of the skin layers, and
by introducing thin absorbing layers between the scattering lay-
ers (see Figure 3). Our formulation of heterogeneity models the
physical characteristics skin, where the epidermis is thin and highly
scattering, and has the highest gradient of optical properties of the
skin layers.

In general, representing the heterogeneous transport of light
would require computing the pairwise transport between each set of
points on the surface [Peers et al. 2006]. A common approximation
is to assume local homogeneity and fit to a simple model, such that
the residual becomes an albedo texture [Jensen and Buhler 2002;
Weyrich et al. 2006; Tariq et al. 2006]. The dipole, however, is a
poor choice for representing materials with significant heterogene-
ity, as it approximates the complete transport between points with
a single radially-symmetric profile. This produces artifacts in the
resulting renderings, such as the overly-smooth shadow boundaries
shown in Figure 9, bottom right.

4.1 Heterogeneity Through Inter-scattering

We begin by considering the multipole model, which assumes that
materials are composed of homogeneous thin layers. A layer profile
predicted by this model describes the light transport between points
on the surface. We now assume that the properties of the layer
are spatially-varying, though we constrain the variation to be slow
relative to the mean free path of light. Because the properties are



Figure 3: Heterogeneous light transport in our model. Light is
scattered among multiple layers, each with spatially-varying pa-
rameters. It is also absorbed as it passes through infinitesimally-
thin absorbing layers between the scattering layers.

locally homogeneous, we approximate the exitant radiance (here
shown for the case of reflectance from a two-layer material) as:

L(~xo,~ωo)≈
∫∫

fi(~xi,~ωi) R+
12,~xo

(~xi,~xo)L(xi,~ωi) fo(~xo,~ωo) d~ωi d~xi, (5)

where fi and fo indicate the modulation of light at the surface of
the layer due to Fresnel effects or any other BRDF. Note that R+

12,~xo
,

the radially symmetric reflectance profile at the point of exitant ra-
diance, is used to predict the contribution of nearby lit points.

In the homogeneous case, convolving two layers together to find
their total transmittance is a radially-symmetric process and yields
a homogeneous response. In our heterogeneous formulation, how-
ever, convolution of layer responses depends on the local position
on the interface between the layers:

T +
12,~xo

(x, y) =
∫∫

T +
1,~x′i

(x′, y′) T +
2,~xo

(x− x′, y− y′) dx′ dy′. (6)

Here, the forward transmittance profile of two heterogeneous layers
at the point of exitance~xo is T +

12,~xo
. It depends on the convolution of

the second layer’s profile at~xo, T +
2,~xo

, with the transmitted responses
of the first layer (T +

1,~x′i
) over all points ~x′i at the interface between

the layers. Since there is a separate profile at each ~x′i, the hetero-
geneities of each layer affect the transport of light between layers.
This convolution of many different profiles produces a heteroge-
neous transport.

The incident flux on the lower layer takes the form of a set of
points from different profiles, each profile having different shape.
The resulting overall profile has a complex, piecewise structure (see
Figure 4). Computing the overall response requires performing a
full 2D convolution, a considerably more expensive process, as the
efficient methods described in the previous section no longer apply.

Just as in the case of homogeneous layers, light that scatters from
the top layer into the bottom layer may scatter back into the top
layer. Accounting for these heterogeneous inter-scattering events
requires evaluating (3) in 2D. For efficiency, we use the sum-of-
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Figure 4: The false-color images at left show homogeneous (top)
and heterogeneous (bottom) profiles. The leftmost images show the
result of convolving a constant 16 × 16 pixel irradiance with the
top layer profiles, while the middle images show the result after
convolving with both layers’ profiles. The plots at right show the
center horizontal scanline of each image. Note that there are sig-
nificant differences, even under this simple illumination.

weighted-Gaussian representation of (4), as we will discuss in Sec-
tion 4.3.

Although the above formulation does not capture heterogeneous
light transport within a single layer, when a layer is thin, light does
not spread very far before propagating to adjacent layers. Also,
when the scattering of the layer is high, the mean free path of light
is shorter within the layer. The gradients of optical properties within
this layer are then small relative to the short mean free path. Thus,
this approach of modeling layers is most accurate when layers with
high parameter gradients are thin and highly scattering; those with
lower-frequency variation may propagate light further with less er-
ror. Also note that, unlike with the dipole model, the transport
between points on the surface now takes many paths between the
layers, and thus involves using potentially different profiles.

4.2 Inter-scattering Absorption

As mentioned above, there may be localized areas of high absorp-
tion at the junction between skin layers, due to either natural or
artificial pigmentation. We account for this by introducing infinites-
imally thin absorbing layers between scattering layers. These sim-
ply attenuate light that scatters out of a scattering layer before it
enters the next scattering layer. This complicates computing pro-
files, since the result of each convolution in (3) (except the last of
each term) must be multiplied by a 2D attenuation map A. The re-
sulting terms include both convolutions and products, and hence are
no longer associative: (A ∗ B) ·C 6= A ∗ (B ·C). Thus, (4) becomes:

Φ ∗ R+
12 = Φ ∗ R+

1 + Φ ∗ T +
1 · A ∗ R+

2 · A ∗ T−1
+ Φ ∗ T +

1 · A ∗ R+
2 · A ∗ R−1 · A ∗ R+

2 · A ∗ T−1 + · · · , (7)

where ∗ and · have equal precedence and are evaluated left to right.
The attenuation A is controlled by an absorbance parameter map P :

A(x, y) = e−P(x,y), (8)

where greater absorbance allows less light to transmit through the
layer.

Note that even without these absorbing layers, light transport in
our model is heterogeneous due to inter-layer scattering, as we de-
scribed in the previous subsection. Also, these absorbing layers can
be thought of as similar to albedo textures at the surface of the skin:
they allow precise control over the inter-scattering of light.

4.3 Efficient 2D Heterogeneous Convolution

Accounting for heterogeneities in our model requires performing
the set of 2D convolutions and point-wise multiplications in (7).
For arbitrary skin layers with complex changes in parameters, pre-
computing and storing a profile per point over the entire surface
would be prohibitively expensive. So, we perform the evaluations
as needed, using graphics hardware to accelerate the computation.

Ideally, evaluating (7) requires performing a convolution of irra-
diance over an arbitrary surface. However, instead of implementing
convolution over non-planar meshes, we perform all calculations on
a 2D planar grid representing a local region of the surface. Specif-
ically, to shade some point ~xo, we first determine a set of nearby
points~xi by taking a regular grid in a parameter space and mapping
back to the surface according to the local UV parameterization. We
collect the irradiance at the ~xi, multiplying by an area distortion
metric so that each element represents the total irradiance contained
within its area mapped on the surface.

We then perform the convolutions and multiplications indicated
in (7). Following d’Eon et al. [2007], we represent diffusion pro-
files by a set of weights for a fixed set of Gaussians. We constrain
the variances of the Gaussian set to be integral powers of an initial
variance. This allows the blur of the next wider Gaussian to be
computed from the results of the previous one, as successive blurs
sum variances: G(2v) = G(v) ∗ G(v).
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Figure 5: We blur irradiance using sums of weighted Gaussians
that represent the heterogeneous profiles of the material. In this
case, we illustrate the data flow of reflectance computation.

Given a profile R, represented as in (4), convolving it with the ir-
radiance Φ is equivalent to blurring the irradiance by each Gaussian
and accumulating the results:

Φ ∗ R =
k

∑
i=1

wi
(
Φ ∗ G(vi)

)
. (9)

Because a Gaussian blur is separable, the cost of convolution is
linear in the number of samples. Convolving two profiles and ac-
counting for inter-layer scattering is performed similarly, through
continued weighted blurring of the irradiance (see Figure 5).

Note that the discretization of the computation onto a grid re-
quires a good parameterization of the surface being rendered: the
UV coordinates of samples determine where irradiance is com-
puted, how the parameter and attenuation maps are stored, and
where final radiance is computed. Ideally, points that are optically
close to each other in world space should be near each other in UV
space, and vice versa.

4.4 Shading Thin Geometry

In the presence of thin geometry, the UV-distance between shading
and lit points may have significant error. This is because points on
opposite sides of a thin surface are likely to be far from each other in
UV space. To account for this discrepancy, we project the shading
point to the lit surface along a vector towards the light.

We use this projected point’s UV coordinates along with those of
the irradiance samples to determine the local frame of the irradiance
grid: the UV distance from irradiance samples to the projected point
determines their location in the grid. We then perform convolutions
to calculate the transmittance through the material. Because the
geometry is thin, we construct a three layer material on-the-fly, con-
sisting of a thin dermis layer bounded by two epidermis layers. We
use the original and projected shade points to find the local material
properties.

Finally, we weight the total contribution of reflectance and trans-
mittance based on the normal at the point being shaded~ns, and the
average normal at the lit points~ni [Donner and Jensen 2005]:

L = 1
2 (1 +~ns ·~nl) R + 1

2 (1−~ns ·~nl) T. (10)

4.5 Implementation Details

We have implemented our heterogeneous shading model in two
forms. The first is a GPU-only version that is limited to simple
geometry, shadows, and moderate texture resolution, but generates
an image in under a second. For more general scenes we have also
integrated our algorithm into a CPU-based Monte Carlo ray tracer.
While the GPU version calculates the convolution of the shading
points under all image pixels in parallel (assuming uniform direc-
tional irradiance), the CPU version samples the irradiance in a small
area around the shading point, as in [Jensen et al. 2001].

Since separable Gaussian blurs are highly parallelizable, both
renderers employ the GPU as a computational engine to facilitate
efficient computation. We construct irradiance grids as described in
Section 4.3, and upload them as 2D textures to the GPU. Recall that

each irradiance sample maps into a texel of the irradiance texture.
As the CPU renderer becomes bound by the speed the GPU can
convolve profiles, we group nearby shade points and process them
together for efficiency. These points then share irradiance samples,
which reduces the number of irradiance samples required per point.
When rendering the surface using the CPU renderer, we use irradi-
ance and convolution texture sizes of 128×128. Higher resolutions
gave no appreciable increase in quality.

We represent each profile as a set of 18 Gaussians, starting from
a minimum standard deviation of 0.01 mm (the mean free path of
light in the epidermis), with increasing powers of this value as
discussed in Section 4.3. To efficiently determine the Gaussian
weights for the optical properties at a particular point, we precom-
pute lookup tables (LUTs) indexed by σa, as scattering is fixed in
our skin model (see Section 5.1). Each LUT is 18×256 pixels,
with each column giving the 18 Gaussian weights for a particular
value of σa. For a given σa, we perform a non-linear least squares
optimization to find the best set of Gaussian coefficients that ap-
proximate the resulting multipole profile. Each layer then has its
own LUTs. We have found 256 logarithmically-spaced samples of
σa to be sufficient for rendering skin.

5 Heterogeneous Spectral Shading of Skin

The most prominent chromophores in the epidermis are melanin
and carotene. Melanin acts as optical protection from harm-
ful UV radiation — it is typically increased by tanning — and
dominates light absorption in the epidermis. As melanin is
not a pure substance, we approximate it with blends of “eume-
lanin” and “pheomelanin”. Small amounts of the yellow/orange
carotene [Sayre and Black 1992] are also found in the epidermis,
often dependent on diet. In contrast, in the dermis the primary
chromophore is hemoglobin, the bright-red chemical that carries
oxygen in the blood. Figure 7 shows (normalized) absorption spec-
tra of these chromophores — see [Jacques et al. 2001] for tabulated
versions of these spectra.

Although in our model the epidermis and dermis are planar lay-
ers, in real skin the interface between them is strongly corrugated.
In approximating the thickness of the epidermis, we effectively in-
corporate part of the dermis. For this reason, we include a small
amount of hemoglobin in the epidermis layer. This inclusion also
helps model the effects of increased blood flow, or erythema, which
gives skin a reddish appearance. Since we include the effects of
melanin in the absorbing layer between the epidermis and dermis,
we have not found it necessary to incorporate melanin in the dermis.

Summarizing, we model skin as a two-layer translucent material,
similarly to Donner and Jensen [2006]. However, our skin model
incorporates six spatially-varying physiological parameters:

Parameter Description Typical range
Cm Melanin fraction 0− 0.5
βm Melanin type blend 0− 1
Che Hemoglobin fraction (epi) 0− 0.05
Cbc Carotene fraction 0− 0.05
Chd Hemoglobin fraction (dermis) 0− 0.1
ρs Oiliness 0− 1

Table 1: Physiological parameters describing skin reflectance in
our model. We use 2D parameter maps to define the parameters
above over a surface. Using (11) and (12), these directly determine
the optical properties (σ

′
s and σa) of the skin layers.

5.1 Spectral Skin Properties

In order to use the above parameter maps to compute (spectral)
reflectance and transmittance profiles, we must evaluate the total
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Figure 6: Measurement setup. Left: Flash inside its case (back and
top removed), facing the positioner ring with the gray card. Filter
wheel visible at top of case. Right: View of camera and polarizers.

absorption in each layer. In the epidermis, the absorption is:

σ
epi
a (λ) = Cm

(
βm σ

em
a (λ) + (1− βm) σ

pm
a (λ)

)
+ Che

(
γe σ

oxy
a (λ) + (1− γe) σ

deoxy
a (λ)

)
+ Cb σ

bc
a (λ) + (1−Cm −Che −Cb) σ

baseline
a ,

(11)

where λ is the wavelength of light in nanometers, Cm is the total
volume fraction of melanin, σ

em
a and σ

pm
a are the absorption coeffi-

cients for the two types of melanin (eumelanin and pheomelanin),
and βm blends between them. Che is the total volume fraction of
hemoglobin, γe controls the relative amounts of absorption from
oxygenated σ

oxy
a and deoxygenated σ

deoxy
a hemoglobin. Finally, σ

bc
a

is the absorption of carotene, and σ
baseline
a is a baseline absorption

of the remaining skin tissue.
The total spectral dermis absorption is :

σ
derm
a (λ) = Chd

(
γd σ

oxy
a (λ) + (1− γd) σ

deoxy
a (λ)

)
+ (1−Chd) σ

baseline
a ,

(12)

where γd controls the oxygenation of the dermal hemoglobin. Note
that we fix γe and γd to be 0.7, a typical value.

We fix the reduced scattering coefficient σ
′
s of light in skin in

our model: in the epidermis, we describe it by the following power
law [Jacques 1998]:

σ
′
s(λ)epi = 14.74λ

−0.22 + 2.2× 1011 × λ
−4, (13)

while in the dermis we reduce this by half. We take the thickness of
the epidermis to be constant at 0.25 mm, while the dermis is consid-
ered to be semi-infinite (for thick surfaces — our approach for thin
structures such as ears is described below). Also, we fix the indices
of refraction of the two layers to be 1.4 and 1.38.

We make two final additions to the two-layer model. First,
to account for surface reflectance, we use the Torrance-Sparrow
BRDF [1967] and scale its contribution by an “oiliness” factor ρs,
as described by Donner and Jensen [2006]. Second, as mentioned
above, we assume that some fraction of the melanin is concentrated
between the epidermis and dermis. Based on our empirical obser-
vations, we set this additional absorption to be 17.5% of the total
absorption of melanin in the epidermis. We also account for other
localized absorption (e.g. from veins) with this absorbing layer,
though it must be manually added (such as in Figure 1).

This two-layer model, with spatially-varying absorption, may
now be used in the rendering procedure described in Section 4.3. To
render thin materials, such as ears, we determine the actual thick-
ness of the dermis as the average distance from the shade point
~xo to contributing lit points, as described in Section 4.4. We then
construct a three-layer material, containing a top epidermis, a thin
inner dermis, and a bottom epidermis. We compute transmittance
profiles using this three-layer configuration. Note that this involves
multiplication by both the front- and back-side absorption layers.

6 Reflectance Measurements
Our heterogeneous model has five parameters that control subsur-
face scattering (ρs controls surface reflection). One option for ob-
taining parameters for the model would be to turn to the medical
literature: the optical properties of skin have previously been mea-
sured and tabulated [van Gemert et al. 1989; Tuchin 2000]. These
tabulations, however, were not acquired with graphics applications
in mind, but rather were intended to define parameter ranges that
characterize healthy and pathological tissue. Choosing good values
to achieve a desired look therefore remains a non-trivial task.

To avoid manually picking model parameters, previous work has
inferred model parameters from RGB textures of skin [Jensen and
Buhler 2002; Donner and Jensen 2006], with additional measure-
ments to constrain the fit [Weyrich et al. 2006]. As our model comes
with an increased number of parameters, these methods would be
difficult to apply. Instead, we describe a new skin measurement
protocol to derive representative parameters for our model.

6.1 Design

Our design is inspired by the acquisition device used by Jensen
et al. [2001]: a digital SLR camera (Canon EOS 20D) observes
a skin sample under orthogonal incident illumination; the camera
view is 30◦ off-orthogonal to avoid retro-reflection. A photographic
xenon flash (Canon 580 EX II) serves as a light source. In addition,
crossed polarizers in front of flash and camera largely eliminate
surface reflection. See Figure 6 for a schematic.

With five degrees of freedom at each surface point, it is not pos-
sible to restrict measurements to three (RGB) channels alone, as has
been done by all previous skin studies in graphics. Instead, to allow
for discrimination of the model constituents, we measure at multi-
ple, narrow frequency bands. To this end, we place narrow band-
pass filters (10 nm-wide band, Cheshire Optical and NewportR©

Optics) in front of the flash. At a 165 mm (6.5′′) distance to the
skin sample, the flash’s output modulated by the filters’ spectra still
provides enough radiant energy for imaging, while the interference
filters’ frequency shift of non-orthogonal rays stays below 0.1 nm
within a volume of interest of 29 mm (1.14′′) diameter. Flash and
filters, mounted in a filter wheel, are contained in a fixed enclosure
that eliminates stray light. Skin samples are positioned at a fixed
location in front of the setup, with a blackened metal ring around
this location aiding proper positioning.

We selected the filter bands based on simulations using our skin
model; we performed an exhaustive search for filter combinations
that provided an optimal signal-to-noise ratio with respect to the
intrinsic model parameters. Note that due to wavelength-dependent
scattering in skin, it is not sufficient to solely consider the con-
stituents’ absorption spectra; the complete reflectance model must
be evaluated. Our choice of filters also avoids the ragged region
around 420 nm in the spectrum of the xenon flash, even though
this region might otherwise have been helpful in discrimination.
Figure 7 shows the filter spectra used, overlaid with the spectra
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Figure 7: Filters that optimally separate the model constituents,
overlaid with the absorption of chromophores used in the model.



of the model chromophores. For maximum irradiance control we
structure the incident illumination by affixing opaque black plastic
tape onto the skin, with a 7.5 mm square window cut out of the
tape. The camera observes the skin through this window, and the
boundary of the cut-out region serves as an occluder modulating the
incident illumination by a box function1.

For each filter, we acquire a reference image of a SpectralonTM

reflectance target placed at the same location as the skin samples.
Relating subsequent measurements to these reference images cali-
brates for incident flux Φ, for camera vignetting, and for the cam-
era’s spectral sensitivity. To track changes in the flash intensity,
a 30% gray card (x-rite) is included in the setup, such that it is
simultaneously lit by the light source and observed by the camera
throughout all measurements.

6.2 Measurement Procedure

We position the taped skin sample in front of the measurement ap-
paratus, taking a series of images with the filter wheel advanced
after each shot (f/10, 1/100 sec, ISO 200–800 depending on wave-
length). We also acquire and subtract off a black image, using the
same setup but with an opaque inset in the filter wheel.

The cross-polarization filters out glossy surface reflection and
single-scattering events. Surface reflectance, however, also affects
the amount of light entering and exiting the skin and therefore has
an effect on the observed diffuse reflectance [Donner and Jensen
2005]. Jensen et al. [2001] assume a smooth surface in their mea-
surements, so that surface transmittance can be described by a trans-
missive Fresnel term Ft(~ω, η) = 1 − Fr(~ω, η). For skin, with its
varying oiliness ρs, transmittance can differ significantly from Ft:
for our measurement geometry, typical dry skin (Torrance-Sparrow
roughness ρr = 0.35) would have 28% higher transmittance and
78% lower reflectance than a smooth surface. We eliminate this
measurement uncertainty by applying a thin film of ultrasound gel
(AquasonicR© Clear) to the skin. This is a clear gel, with an index of
refraction close to water, that is designed to adhere closely to skin.
The gel remains glossy throughout the measurement procedure and
removes the influence of the skin’s surface BRDF by inducing the
transmittance described by a smooth Fresnel term.

Before further processing, we identify the cut-out region in each
image separately, and resample the captured images within it. This
way, we implicitly compensate for potential subject motion be-
tween images. A final image alignment step further improves cor-
respondence between the different wavelength components.

6.3 Model Fit

The stack of images acquired from a skin patch represents a sin-
gle, multi-spectral image of that patch. We estimate model pa-
rameters for each multi-spectral pixel using inverse rendering [Yu
et al. 1999]. Starting from average skin parameters, a gradient-
descent optimization repeatedly renders the skin patch and alters the
model parameters to minimize the differences between the render-
ing and the acquired image. The optimization uses a multi-spectral
GPU implementation of our layered, heterogeneous skin model,
as described in Section 4.3. At each step of the optimization, the
model includes an absorbing layer between the epidermis and der-
mis which contains 17.5% of the predicted melanin concentration.
Additional absorption not directly predicted by the model, such as
from veins, becomes part of the residual of the fit. Accounting for
this would require manually editing the parameter and absorption
maps, but we have chosen not to do so in our fits.

The inverse renderer simulates the incident illumination, mod-
ulated by the black-tape occluder, and computes radiant exitance

1 Note that this allows us to observe part of a line convolution of the scatter-
ing profile along the tape edges, where skin areas closer to the occluding
tape observe less light through scattering from nearby regions.

at each pixel for each measured wavelength. After each gradi-
ent descent iteration, we copy nearby skin parameters to occluded
regions. We simulate a one-centimeter-wide boundary of the oc-
cluded region to accurately account for inter-scattering between vis-
ible and occluded regions. The gradient descent simultaneously op-
timizes the parameter vector at each pixel, estimating the objective
function’s gradient using forward-differences. By simultaneously
evaluating all forward differences (by rendering the full patch), the
scattering cross-talk between surface points implicitly couples the
independent optimizations, leading to a consistent solution of het-
erogeneous model parameters. The strong coupling between pixels
due to the scattering profiles’ large support leads to rapid conver-
gence, typically within 400 iterations.

6.4 Error Analysis

Great care has been taken to radiometrically calibrate all compo-
nents of the setup. We found that special attention had to be paid
to effects due to imperfect depolarization. From systematic mea-
surements we derive that Spectralon’s reflectance varies by±5.27%
between s- and p-polarization of the camera’s polarizer, which must
be taken into account when radiometrically calibrating the system.
In addition, we find that scattering in skin depolarizes even more
imperfectly than Spectralon: on a gel-treated skin sample oriented
obliquely to the camera (to avoid glossy reflection), we observe a
polarization-dependent intensity variation of ±20.0% around the
average diffuse reflectance. We include these biases in our calibra-
tion, unlike previous work in graphics and vision that assumes that
cross-polarization transmits exactly 50% of diffuse reflectance.

The radiometric accuracy has direct influence on the conver-
gence of the inverse rendering; errors in scale slow down conver-
gence and increase the residual. We achieve optimal convergence
by scaling our data by 1.02, a small correction factor that indicates
a fairly good radiometric calibration. On 256×256 pixel patches,
the optimization typically converges to a residual below 3% RMS
reflectance. We believe that this residual is due to camera noise and
to effects in the tissue that are not simulated by our model.

7 Results

Given parameter maps that define the model parameters in Table 1,
Equations (11)–(13) directly define the scattering and absorption
properties of the skin layers. These then let us define the Gaussian
coefficients which represent each layer’s reflectance and transmit-
tance profiles. We then use the multipole model to convolve irra-
diance with profiles as described in Section 4.5. Note that unless
stated otherwise all images rendered in this paper use a surface
roughness of 0.35.

The renderings in this section were performed on a Dual-Core
Intel Core 2 Duo 3.0 GHz machine with one NVIDIA GeForce 8800
GTX and one GeForce 8800 GT (G92) graphics card. The GPU
renderer computes a multi-spectral image on a single GPU in about
a second, while the CPU version takes under 15 minutes per image.

We render images using 8 spectral samples, at wavelengths 400,
435, 470, 505, 540, 575, 610, and 645 nm. We have found this
set to give results within 1% error in final RGB color, relative to a
reference using 151 samples spaced every 2 nm. Note that this is a
different set of wavelengths than used for acquisition, as the latter is
optimized to expose the differences between model constituents. To
obtain RGB color values after rendering with the spectral model, we
convert from spectral to XYZ using the CIE 2◦ Standard Observer
color matching functions x, y, z [CIE 1931].

In our implementation, we compute the first 5 terms of (7)
for blue wavelengths, and 6 terms at green and red wavelengths.
This is sufficient to compute the inter-scattering of light be-
tween layers while preserving over 99% of the profiles’ spec-
tral energy. To limit the computational cost when rendering thin



Figure 8: Changing skin parameters with mechanical deformation.
The example shows a reduction of blood flow (hemoglobin con-
centration) after clenching and releasing the hand. The parameter
maps (scaled 20x) for hemoglobin are shown in the insets.

three-layered geometry, we compute only terms with at most two
R+∗R− factors for each adjacent pair of layers, and only terms
with forward transmittance profiles. These terms take the form:
T +

1 ∗(R+
2 ∗R−1 )∗[0−2]∗T +

2 ∗(R+
3 ∗R−2 )∗[0−2]∗T +

3 . The exponent denotes
the number of inter-scattering convolution factors (from 0 to 2).

7.1 Using the Model

To demonstrate the practicality of our model, we manually created
chromophore maps and an absorbing layer for a model of the palm
of a hand [Ma et al. 2007], as shown in Figure 1. Though the model
is generated from high-resolution normal data, and this contributes
to the realism of the rendered image, the color, luminance, and con-
trast come from the underlying shading model.

Modifying parameter maps: The parameter maps (scaled in in-
tensity to show detail) shown in Figure 1 correspond to epidermal
melanin, inter-layer absorption due to blood vessels at the junc-
tion between the skin layers, and dermal hemoglobin (no epidermal
hemoglobin is used). The contribution of melanin to the absorbing
layer is not shown. Note the simplicity of the maps; the com-
plex interaction of light is captured by the heterogeneous layered
model. These effects would be difficult to achieve using albedo
maps. Direct access to the physical parameters allows realistic ren-
dering of changes of the skin condition. Figure 8 shows the same
model before and after undergoing a possible mechanical deforma-
tion (e.g. clenching the hand into a fist and then releasing), which
forces blood to flow away from the deformed areas. We simulate
this effect by changing the concentration of hemoglobin in our skin
model. The hemoglobin parameter maps are inset into the rendered
images. The values of the parameter maps have been scaled to bet-
ter detail their differences.

Heterogeneous vs. homogeneous: Figure 9 demonstrates the
differences in scattering between homogeneous and heterogeneous
profiles. We compare renderings of a flat patch of skin, using Don-
ner and Jensen’s [2006] homogeneous model with average homo-
geneous parameters (first row), and our model with heterogeneous
(third row) parameters. The second row adds an albedo texture to
the homogeneous model derived by dividing the heterogeneous im-
age by the homogeneous one. Note that creating the albedo texture
by hand would be difficult even for a skilled artist, and in this case
required first rendering the heterogeneous image. In the second
column, the patches are lit with non-uniform, structured illumina-
tion using strips of light. Though the appearance seems similar,
when lit with brighter strips (third and fourth columns) clear het-
erogeneities are visible using spatially-varying parameters, while
the albedo-mapped image retains its homogeneous characteristics.

Thin material transmission: Figure 10 shows an image of a
back-lit ear transmitting light, with parameter and absorption maps
adding the effect of internal veins and freckles. Here we sample
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Figure 9: Renderings of skin with homogeneous parameters (top),
homogeneous parameters modulated by an albedo texture (middle),
and heterogeneous parameters using our method (bottom). The left
column shows fully lit images, while the remaining columns are lit
by strips of light of different intensity.

Figure 10: A back-lit ear rendered with absorbing layers. Trans-
mittance is calculated using the multipole model, not an approxi-
mate transmittance using a reflectance profile. Veins and freckles
are controlled by parameter maps over the model geometry.

the illumination normally, but project the shade points to the lit
side of the ear to obtain the convolved irradiance as described in
Section 4.4.

7.2 Skin Measurements

To evaluate our model using actual chromophore concentrations of
real skin samples, we measured 39 skin patches across different
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Figure 11: Measured skin patch (top) compared to its model fit (bottom) at each of the nine measured wavelengths, and in RGB (right).

Skin n Interior Arm
Type Che Chd Cm βm Cbc

I 1 0.000184 0.004133 0.000126 0.0238095 0.000240
II 1 0.002971 0.007399 0.00571 0.833975 0.000010
III 2 0.001441 0.004674 0.005364 0.151566 0.000081
IV 2 0.002359 0.004503 0.013851 0.11501 0.001105

Skin n Exterior Arm
Type Che Chd Cm βm Cbc

I 1 0.001933 0.005001 0.002346 0.0767263 0.001543
II 1 0.000342 0.004226 0.002718 0.894776 0.000000
III 1 0.001766 0.004072 0.009446 0.143447 0.000113
IV 1 0.003252 0.006598 0.019121 0.137964 0.002384
V 1 0.006558 0.012924 0.038484 0.0603627 0.006445

Table 2: Chromophore distributions for different skin types.

skin types, conditions, and regions of the body. A measurement
takes roughly 20 seconds; the limiting factor is the manual advanc-
ing of the filter wheel. The skin patches cover roughly 500×500
pixels in the camera image. After bilinearly resampling them to
512×512, we finally downsample (box-filter) the patch to 256×256
for inverse rendering, which provides moderate noise reduction.

Reconstructions: Figure 11 shows a patch of skin that has been
reconstructed with our acquisition procedure. Shown are the nine
acquired single-wavelength images and renderings of the recon-
structed skin model. The rendering features a smooth surface, mim-
icking the effect of gel application. Even though we re-stage the
conditions at acquisition time, it is not possible to directly compare
the reconstruction to an RGB image taken under the same condi-
tions: correctly displaying such an image in sRGB would require a
full spectral calibration of the flash and the camera response, which
we avoid in our setting. Figure 12 (a) shows the corresponding eu-
melanin, pheomelanin and hemoglobin distributions in this patch.

Note that the chromophore distributions in Figure 12 show dis-
tinct features such as scars and freckles separated into different lay-
ers. Also, although Figure 12 (b) shows some hemoglobin within
the freckle, it has a distinctly different structure from the melanin
distributions. Figure 13 shows additional reconstructions, demon-
strating the variation within single subjects and across skin types,
with selected coefficient maps in Figure 12 (a–d).

Chromophore variation: For further analysis, we eliminate out-
lier pixels within each patch reconstruction by discarding pixels
where one of the coefficients falls outside the 5- and 95-percentiles;
all numbers refer to the full set of 39 scans. First, we concentrate on
skin type. Of subjects that cover the Fitzpatrick skin types I through
V [Fitzpatrick 1988], we measured patches on the lower arm, both
on the inside and on the more strongly pigmented outside. This
provides us with the skin-type dependent average concentrations
shown in Table 2. Unfortunately, most of the statistics are with re-
spect to a single subject each (column n). Differences between skin
types are quite noticeable and, as to be expected, mainly established
in the melanin concentration.

We also scanned multiple skin patches of single subjects to ana-
lyze intra-subject variations of skin appearance. Our initial expec-
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Figure 12: Chromophore concentrations as derived from our mea-
surements, corresponding to Figure 13 (a–d).

tation to reveal correlations within a subject’s samples, potentially
allowing for a subject-specific model with fewer parameters, was
not met. It turns out that intra-subject variations can be larger than
inter-subject variations measured at corresponding points. Even
within a single skin patch, PCA analysis across coefficients still
requires a 4-dimensional basis to reach an average 98.7% accuracy.

Model validation: To validate the model and its fit, we analyze
correlations between the different model chromophores across all
pixels in all patches. In accordance with the general gradient of
hemoglobin in skin, there is a strong correlation between dermal
and epidermal hemoglobin (correlation coefficient 0.87). However,
the ratio between the per-patch average of Chd and Che ranges from
1.7 and 2.8 in most scans. Thus, we argue that despite the high
correlation, this variability does not allow us to reduce the model by
tying both Chd and Che to a single model parameter. Other general
correlations among skin chromophores are not known. Indeed, we
find only negligible correlation between melanins (0.034 between
all pixels; 0.12 between mean concentration of patches). There
is, however, a slight correlation among all reddish chromophores
(hemoglobins, pheomelanin, beta-carotine), indicating that their
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Figure 13: Example skin patch reconstructions (a,b,d,e,h,i) Cau-
casian, skin type III: bridge of the nose (a), freckle on arm (b)
slight acne on arm (d), forehead (e), stronger acne on arm (h),
scar on edge of the hand (i). (c,g) African, skin type V: exterior
lower arm (c) (artifact due to hair), wrinkles at posterior side of
wrist (g). (f) Caucasian, skin type II, exterior lower arm. (j) Asian-
subcontinental, skin type IV, scar on back of hand. (k,l) Caucasian,
red-haired, skin type I: exterior (k) and interior (l) lower arm.

separation is imperfect. In most cases, we observe unusually high
pheomelanin-to-eumelanin ratios, which has to be attributed to this
effect. We believe that a better separation would be possible by
measuring far blue wavelengths, which unfortunately would be dif-
ficult to achieve with off-the-shelf light sources and cameras.

Chromophore editing and synthesis: Figure 14 shows exam-
ples of the direct access to skin conditions possible with our model.
We synthesize new skin appearance by using the hemoglobin coeffi-
cients from one patch to replace hemoglobin in another patch. This
shows how coefficient maps can independently be edited to achieve
a desired effect. We further demonstrate the clear separation of
chromophores by scaling hemoglobin and melanin concentrations
independently. Note how our acquisition method was able to pick
up the delicate structure of the faint melanin distribution in 13 (i).

The images in Figure 15 use texture synthesis to directly synthe-
size skin appearance from the acquired chromophore distributions.
We use image quilting [Efros and Freeman 2001], to synthesize
parameters over the surfaces. One of the original datasets used is
shown in Figure 13 (d). In the left image we model a tattoo using an
absorbing layer between the epidermis and dermis: the pigments of
a tattoo are represented using eight absorption maps, one for each
spectral sample. Scattering and absorption in the epidermis give
depth to the tattoo and the veins in the right image. This also causes
them to acquire a bluish tint.

8 Discussion

Spectral vs. RGB model: Our shading model renders images by
simulating light transport in 8 spectral bands. We handle this with
two separate shading passes on the GPU, where each pass processes
4 spectral bands in parallel. In many cases these spectral computa-
tions can be limited to the skin shader only, by tagging irradiance
samples per light, without significantly modifying the entire render-
ing pipeline. Unfortunately, as shown by Donner [2006][Chapter
8.5.1], the non-linearity of the multipole model prevents a simple
transform from a spectral to an RGB model, and RGB profiles intro-
duce significant errors due to compression of the color space.

Design decisions: In designing our measurement system, we
made several decisions to simplify the parameter optimization. In

13 (f)

combined

13 (h)

13 (i)

2×Chem 2×Cmel

4×Chem 4×Cmel

Figure 14: Left: Assigning the hemoglobin distribution of the patch
from Figure 13 (h) to 13 (f). Right: Increasing blood flow (left) and
tan (right) of a sample with scar tissue. Note how capillaries do not
reach scar tissue, while melanin manages to diffuse into it.

particular, we chose to fix the scattering coefficient σ
′
s. In contrast

to other potential constraints, fixing σ
′
s does not affect the mean

free path of light; absorption heterogeneities lead to realistic varia-
tions in how far light "bleeds" into shadows (see Figure 9). Phys-
iologically, our choice of chromophores is fairly common in both
graphics and biology. We do, however, implicitly assume that the
chosen spectra (taken from measured data of real tissues) and an
isotropic scattering model of two plane-parallel layers can accu-
rately describe light transport in skin.

Fit convergence: All of our acquired datasets converged to a
sufficiently low residual after 200 to 500 iterations. Convergence
appears to be independent from the choice of initial values, but
starting closer to the desired skin type speeds up convergence.
For the final data fits we report, we arbitrarily chose the follow-
ing initial values: epidermal eumelanin 0.73%, pheomelanin 0.3%,
hemoglobin 0.3%, beta-carotene 0% and dermal hemoglobin 0.6%,
which corresponds to very pale Caucasian skin.

9 Conclusion and Future Work
In this paper we introduced a spectral, layered shading model for
heterogeneous skin. Our model captures these heterogeneities via
inter-layer scattering, and accounts for spatially-varying changes
in optical properties, as well as inter-layer absorption. We have
demonstrated our model’s ability to capture the heterogeneous ap-
pearance of skin, and to reproduce a wide range of skin appearance
over various skin types and conditions. In particular, the use of
simple and intuitive parameter maps allows our model to simulate
complex visual phenomena that would be difficult to achieve using
only albedo maps.

Figure 15: Left and right: Texture synthesis from scanned data to
propagate an appearance across a surface. Left: An absorptive tat-
too texture (inset) between epidermis and dermis reveals “depth”.



We presented a measurement procedure that is capable of re-
trieving model parameters from living skin, thereby providing re-
alistic, spatially-varying chromophore concentrations. Analyzing
the measurements, we conclude that our skin model cannot be sig-
nificantly simplified while maintaining physical quantities relevant
for skin’s visual appearance. Because wavelength restrictions have
led to a slight correlation between reddish chromophores, the re-
covered concentrations may not be suitable for medical diagnosis;
nonetheless, we feel that they are accurate enough for applications
in computer graphics. The procedure itself is general enough to be
applied to layered materials other than skin.

In summary, we believe that our rendering model represents an
attractive tradeoff between variability, visual accuracy, and prac-
ticality. It provides access to its static and dynamic appearance
parameters, and faithfully renders material heterogeneities, while
being more efficient than a full simulation of scattering in hetero-
geneous materials.

So far, we have only demonstrated our acquisition method on
small patches of skin. Acquiring multi-spectral measurements of
whole body regions is conceivable and would require a larger light
source and a geometric reconstruction for radiometric calibration.
The main challenge would be to handle surface roughness: the cur-
rently used gel application does not scale practically. Future work
may also evaluate the performance of our model on other layered
materials. We also believe that the model can be used as an approx-
imation for general heterogeneous materials by discretizing them
into layers.
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