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ABSTRACT
Digitization of historical documents is extremely useful as
it allows easy access to the documents from remote loca-
tions and removes the need for potentially harmful physical
handling. Traditional imaging methods are unsuitable for
documents with complex geometry as they will produce
images containing perspective distortions, and 3D imaging
methods previously proposed for document scanning will
often suffer from occlusions and/or require manual alignment
of individual range scans. We present a lightweight pipeline
for imaging and generating 3D reconstructions of severely
damaged and distorted documents which exhibit such com-
plex geometry. We demonstrate our pipeline on The Great
Parchment Book of The Honourable The Irish Society, a 17th
century survey of the Ulster estates managed by the City of
London, which was severely damaged by a fire in 1786.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation—
Digitizing and scanning ; I.7.5 [Document and Text Pro-
cessing]: Document capture—Scanning

General Terms
Document digitisation, scanning, 3D reconstruction

1. INTRODUCTION
In this paper we present a pipeline for imaging and generating
3D reconstructions of highly distorted historical documents
such as those shown in Figure 1.

This method is particularly relevant to archives and muse-
ums who possess such valuable historical documents whose
contents are inaccessible and which cannot be fully restored
by conventional means, and are difficult to read in person
due to high levels of damage and the fragile nature of the
material. Such damaged documents are surprisingly common
in archives across the world. Due to the fragile state of
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Figure 1: Folios with strong geometric distortions caused
by fire damage. (Reproduced with the permission of The
Honourable The Irish Society and the City of London Cor-
poration, London Metropolitan Archives)

the folios, access is restricted to a select few persons and
all handling must be done by a trained conservator. Digi-
tal representations of such documents help to overcome this
problem by allowing people to read their contents at any time,
from remote locations, and without necessitating harmful
physical handling of the document.

Digital representations can also allow for types of virtual con-
servation, which is not possible on the physical folios. These
could include removal of geometric distortions, correction of
discolouration, and contrast enhancement on faded text, all
of which would risk irreparable damage to the documents if
attempted on the physical documents themselves.

We apply our pipeline to an early modern document called the
Great Parchment Book of The Honourable The Irish Society,
a property survey of the Ulster estates managed by the City
of London commissioned by Charles I in the 17th century
whose contents are of great interest to historians studying
the history of this region. The book fell victim to a fire in
1786, causing such strong distortions which conservators tell
us cannot be restored by traditional conservation methods.

To demonstrate the high quality of our reconstructions, we
also introduce a novel quality metric to gauge the effective
digitisation resolution of our reconstruction according to
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archival standards.

2. RELATED WORK
A number of methods have been proposed for imaging and
reconstructing the 3D shape of a document. These methods
can be broadly grouped into three different classes: single-
image methods, stereo-image methods, and structured-light
scanning methods.

Single-image methods are typically designed to reconstruct
the shape of modern printed documents with the aim of
rectifying their text to improve the performance of OCR
algorithms. Wada et al. [23] and Zhang et al. [27] propose
methods to reconstruct the surface of bound documents
scanned with a flat-bed scanner by using the shading cues in
the image. Tian & Narasimhan [20] reconstruct the shape of
smoothly folded pages by detecting horizontal line directions
and vertical strokes in the text, fitting a 2D text grid to
the image, and then estimating the 3D position of each grid
cell. Such methods are not applicable to damaged historical
documents since we cannot make such strong assumptions
about shading and textual cues.

Methods such as those proposed by Ulges [21], Lampert
et al. [14], and Koo et al. [12] capture stereo images of a
document from which a 3D surface can be reconstructed.
These methods are demonstrated on open books, and assume
there is no self-occlusion in the pages.

Structured-light scanners have also been used by Brown &
Seales [3], Brown et al. [4], and Sun et al. [19], and Bianco
et al. [2] to capture a document’s shape. Here the document
surface is illuminated with a known pattern, and the distor-
tion of the pattern as seen from a camera is used to compute
the 3D shape. The approach makes no assumptions about
the content of the document, but makes the same assump-
tions as the stereo-image approach regarding the absence of
self-occlusions in the document. If there are any regions of
the page which cannot be seen by both the camera and the
projector, they will not be reconstructed.

As an alternative method, the cultural-heritage digitisation
community increasingly makes use of multi-view stereo tech-
niques, which compute a 3D representation of an object or
scene from an unordered collection of images taken from
arbitrary camera positions. Some multi-view stereo algo-
rithms require the camera calibration parameters as input,
while others estimate these parameters as part of the recon-
struction process. The types of 3D representations produced
include point clouds [18, 25, 8], volumetric models [13, 7],
and triangle meshes [22, 1]. ARC 3D [22] and Autodesk
123D Catch [1] are both free end-to-end web services which
compute textured 3D models from an uncalibrated set of
images, and are popular in cultural-heritage digitisation.

3. OUR APPROACH
For our acquisition problem, we adopt multi-view stereo. The
approach is very well suited for practical, manual acquisition
of the deformed parchments, as it allows a user to freely
choose viewpoints to reach all parts of the wrinkled surface,
while using commodity hardware only.

Figure 2: Acquisition setting.

Figure 3: An input image set for a single parchment page.

3.1 Imaging
We image the parchments using a hand-held DSLR camera
(Canon 5D Mark III). Each parchment is placed on a black
velvet cloth and illuminated with three large, evenly spaced
diffuse lights to provide uniform illumination (Figure 2). A
calibration target is also placed on the table next to the
parchment, which can be used to measure scale and to cali-
brate colours. For each page, we first take a set of images
(typically between eight and ten) in a circular formation such
that the entire parchment is visible in each image. We then
take many more close-up images, making sure to cover the
entire surface of the page thoroughly. For highly distorted
areas of the parchment where the text has shrunk to a very
small size, we use a macro lens to obtain extreme close-up
images of the text. Typically, a single image set will contain
between forty and sixty images. Figure 3 shows an example
of a complete image set for a single page.

Previous approaches such as top-down cameras or structured-
light scanners would not be able to cope with the self-
occlusions in the pages and would produce incomplete recon-
structions. Using a hand-held camera, however, allows us to
adapt the imaging process to the highly varying shapes of
the parchment, and guarantee full coverage of the parchment
surface.

Archives and museums are also unlikely to have access to
such specialised scanning equipment or the expertise required
to use it. Since our image method is simple and requires only
a digital camera, it is far more accessible to such institutions.
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3.2 Reconstruction
3.2.1 Structure from Motion

We process the image sets with Wu et al.’s VisualSFM [25]
software which uses Wu et al.’s GPU implementation of
SIFT [15, 24] and their multi-core bundle adjustment al-
gorithm [26] to generate a sparse 3D reconstruction using
structure from motion, along with camera calibration param-
eters for each image. These parameters are a focal length
f , a 3× 3 camera rotation matrix R, and a 3-vector camera
translation t.

We then apply Furukawa and Ponce’s PMVS algorithm [8]
to generate a dense point reconstruction, examples of which
are shown in Figure 6. The PMVS algorithm is considered
state-of-the-art in the area of dense reconstruction, and both
it and VisualSFM’s structure from motion procedure perform
very well on even highly unstructured image sets containing
variations in lighting, image exposure, lens type, etc. Source
code and binaries for these algorithms are available from the
authors’ websites.

The reconstruction is performed up to an arbitrary scale, so
the distances in the resulting object space do not correspond
to the true distances in real-life space. To correct for this we
allow a user to mark points on the colour checker which are
a known distance apart in reality and then triangulate their
positions in object space to compute a scaling factor which
can be used to scale distances in object space to match those
in real-life space.

3.2.2 Surface Reconstruction
The next step in our pipeline is to compute a triangle mesh
from the dense point cloud, for which we use Kazhdan et al.’s
Poisson Surface Reconstruction algorithm [11], which fits a
surface to a set of oriented points. It forumulates the surface
reconstruction as a single Poisson problem which is solved
using a multiscale approach. This algorithm requires very
little parameter-tuning (we use the exact same parameters
for every reconstruction), is resilient to noisy data, is able
to interpolate holes in the point reconstruction very well,
and since it makes use of the normals that are generated by
PMVS, it is a natural choice for fitting a surface to the points.
We use the Poisson Surface Reconstruction implementation
provided in MeshLab [16]. Examples of reconstructed meshes
are shown in Figure 7.

3.2.3 Texture Mapping
The final part of our reconstruction pipeline is to gener-
ate texture maps for the triangle meshes. The problem of
computing a well-structured texture-coordinate parametriza-
tion for an arbitrarily shaped triangle mesh is still an active
area of research, and is a difficult problem especially for
meshes generated by 3D reconstruction algorithms which
often contain bad geometry. For the sake of simplicity and to
circumvent these difficulties we use the texture atlas method
by Esteban & Schmitt [10], originally proposed by Schmitt
and Yemez [17].

Each triangle in the mesh is mapped to its own right-angled
triangle of edge length N in the texture atlas. For each vertex
p in the mesh, and for each input camera C, we assign a weight
w̃C

p according to how well C sees p. The weighting scheme

is adapted from Buehler et al.’s Unstructured Lumigraph
interpolation [5] scheme, and takes into account visibility,
relative angle, and resolution of the vertex in each camera.

For a vertex p with normal vector n, and a camera Ci in the
set of observing cameras C, with centre of projection oi and
viewing ray vview we define the penalty terms as:

Eang = arccos(n · vview)

Eres = ‖p− oi‖

Evis =

{
0, if p is visible in Ci

∞, otherwise

Etotal = Evis + wangEang + wresEres

In our system we choose wang =5 and wres =1. The visibility
term, Evis, is computed by first checking that the projection
of p into Ci lies within the image, and then testing for
occlusions by performing a ray cast from oi to p and checking
that the ray does not intersect the mesh in before reaching p.

The angular term, Eang, prefers cameras whose viewing angle
is as close to parallel with the surface normal at p. This
aims to reduce blurriness in the texture by avoiding the use
of images which contain foreshortening effects.

The resolution term, Eres, prefers cameras whose optical
centres are close to p. These close-up images capture the
surface details in the highest resolution and are therefore
ideal for generating the highest resolution textures possible.

For a given vertex, we rank each input camera according to
their total penalty and then define Tadaptive as the 3rd largest

penalty value. The weight w̃Ci
p is then computed as:

wCi
p = max

(
1− Etotal

Tadaptive
, 0

)
,

w̃Ci
p =

w∑
Cj∈C w

Cj
p

,

corresponding to Unstructured Lumigraph interpolation with
k=3, ensuring that only the two cameras with lowest penalty
are given non-zero weights, while continuous variations in
the penalties lead to smooth variations of camera weights.

To generate the texture for triangle T with vertices p0, p1,
and p2 (each of which has been assigned the two cameras
that see it best), we form the set of cameras CT containing
the cameras associated with the vertices of T . CT will contain
at most six cameras but will often contain fewer than six
since it is likely that neighbouring vertices will be best seen
by the same cameras. Then for each camera Ci ∈ CT , we
set the alpha value at each vertex pj of T to be w̃Ci

pj , i.e.,

the weight of Ci at the jth vertex of T , and then render the
triangle into the appropriate section of the texture map. An
example texture atlas is shown in Figure 4.

The size N of the triangles in the texture atlas is selected to
make most use of the high resolution pixel data in the input
images. For a given triangle T in the mesh M, we compute
the average length of its edges in pixels when projected into
the camera in C which sees it best. This is repeated for all n
triangles in the mesh to compute an overall average projected
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Figure 4: An example texture atlas generated by our method.

edge length which we use as N . These triangles are then
packed inside k M ×M texture atlases. We set M to be 4096
in our reconstructions but this can be changed to generate
smaller or larger atlases.

When using many close-up images of parchment, the value of
N can become very large and generate a number of texture
atlases too large to hold in typical GPU memory. For this
reason, we include an optional parameter kmax which limits
the total number of texture atlases generated and selects the
value of N which will pack the triangles as tightly as possible
into the available texture space.

The advantage of selecting camera weights on a per-vertex
instead of per-triangle basis is that we avoid discontinuities
across triangle boundaries. Given two neighbouring triangles
T1 and T2 which share two vertices p0 and p1 along an edge
e0,1, the choice of best cameras for p0 and p1 is independent
of which triangle we are considering, and so the texture in
T1 will blend smoothly over e0,1 into the texture in T2.

If we just consider the texture within a single triangle T ,
however, there may still be discontinuities if T is not entirely
visible in all of the cameras used to texture it. Such discon-
tinuities happen at visibility boundaries, where a camera C
sees some but not all of the vertices of T , and may therefore
have a non-zero camera weight even at parts of T which it
cannot actually see. To avoid this situation, we erode the vis-
ibility mask of C so that a vertex is only considered visible by
C if each triangle incident on that vertex is completely visible
in C (i.e., if C sees that vertex as well as its neighbours). We
use this eroded visibility mask in our computation of Evis.

4. QUALITY METRIC
Professional archival standards for document digitisation re-
quire minimum resolutions for the resulting raster images [6].
In the case of planar 2D artefacts that are imaged with

Figure 5: Visualisations of effective sampling density of the
parchment reconstruction shown in Figure 8, left. Left: His-
togram of effective DPI. Most mesh vertices are sampled at
around 850 DPI, with a much smaller number of vertices
having been captured at approximately 240 DPI. Right: His-
togram of local sampling stretch. The vast majority vertices
exhibit significantly less than 1:1.5 anisotropy.

flatbed scanners or in a fronto-parallel camera image, this
minimum resolution is expressed in dots per inch (DPI). In
our case, however, the effective1 sampling density of the
reconstructed parchment varies across the parchment surface,
dependent on the imaging conditions of the images contribut-
ing to each surface point, therefore assigning a single DPI
quality label would not sufficiently characterise the dataset.

In order to allow for an assessment of the reconstruction
quality in familiar terms, we propose looking at the dis-
tributions (or histograms) of both effective DPI and local
stretch in the sampling across the parchment. Figure 5 shows
these distributions at the example of the parchment shown
in Figure 8, left. We argue that such histograms provide
an excellent way to gauge the quality of a dataset in terms
easily communicated to archivists.

We determine the local, effective sampling density at each
mesh vertex p by looking at the mapping of the camera
image that contributed the most to the texture at p. Let the
corresponding camera’s projection matrix be P , we approxi-
mate its perspective mapping from the image to the mesh
domain as being locally affine, which allows us to express
this mapping around p by its Jacobian JP (p) [9]. Its deter-
minant det JP (p) denotes the inverse surface area an image

pixel projects to; hence d =
√

det JP (p) is the local mean
sampling density in DPI (assuming units of inches). However,
for grazing camera views, the sampling may be anisotropic.
The level of anisotropy is given by the Jacobian’s condition
number, a = κ(JP (p)), implying that the local sampling is
d
√
a DPI in the direction of maximum stretch and d/

√
a DPI

perpendicular to it.

5. RESULTS
Figures 6, 7, and 8 show the sequence of our reconstruction
pipeline. Figure 6 shows examples of dense point clouds
computed by VisualSFM and PMVS, each containing in the
region of 4-million points. Applying Poisson Surface Recon-
struction to these point clouds generates triangle meshes
with in the region of 400,000 triangles. Figure 7 shows these
triangle meshes after being simplified to 50,000 triangles
using quadric edge collapse decimation. Finally, Figure 8
shows the textured triangle meshes generated by our texture
mapping procedure. In these reconstructions, we restricted

1While it is possible to store the same data at arbitrary
resolution (by simply up-sampling it), the effective resolution
corresponds to the actual resolution at which features are
still resolved.

17



the texture mapping algorithm to generate a maximum of
five 4096 × 4096 texture atlases. The camera calibrations
produced by multi-view stereo inevitably contain some error,
which can lead to ghosting artefacts in the texture. We found,
however, that such artefacts were never sufficiently large to
impact the legibility of the text.

Figure 6: Point clouds generated by VisualSFM and PMVS.

Figure 7: Triangle meshes generated by Poisson Surface
Reconstruction.

Figure 8: Textured triangle meshes generated by our recon-
struction pipeline.

5.1 System Comparisons
We evaluated our reconstruction method by comparing it
to two state-of-the art multi-view reconstruction systems,
ARC 3D [22] and Autodesk 123D Catch [1]. Surprisingly,
ARC 3D proved unable to produce reconstructions from
our input images. We can only speculate that the system
uses internal heuristic assumptions that are not met in our
dataset.

We hence compare the results of our method with those
obtained from 123D Catch using the same input image sets.
Figure 10 shows examples of differences in the reconstructions
of three different parchments. The images on the left show
regions of the reconstructions generated by our pipeline, and
on the right the corresponding regions of the reconstructions
generated by 123D Catch.

The 123D Catch reconstructions often show significant ghost-
ing effects, suggesting a significant error in the camera cali-
brations or the reconstructed geometry. These can be seen
in Figures 10.h and 10.j, whereas our corresponding recon-
structions in Figures 10.g and 10.i are significantly sharper
and contain no obvious ghosting.

Figure 9: Left: effective DPI and Right: sampling anisotropy
inside a deep crease.

Figure 10.f also shows examples of holes which sometimes
appear in the 123D Catch reconstructions. In this case,
the holes lie in a region of text and cause loss of textual
information. In our reconstruction (10.e) these areas of text
are fully reconstructed.

Even in areas where 123D Catch reconstructs the surface
accurately the textures almost always have a lower effective
resolution than ours. For one parchment it generated only
three 4096×4096 texture atlases (each with a large proportion
of unused pixels), compared with 11 atlases of the same
size in our reconstruction. We suspect this is due to heavy
down-sampling of the input images. This can be seen in
Figures 10.b and 10.d where the 123D Catch reconstructions
are noticeably blurrier than our corresponding results.

5.2 Reconstruction Quality
Figure 11 shows visualisations of how the local effective DPI
and sampling anisotropy varies over the surface of eight
folios, as well as the corresponding histograms showing the
distributions of the sampling rate and anisotropy for each.

We can see that in all eight cases the majority of the surface
is sampled at well over the recommended minimum of 300
DPI, and in most cases more than the high quality archival
standard of 600 DPI [6], and with low anisotropy of less than
1:1.5. Some areas of the documents are seen to be under-
sampled. These areas tend to lie on the borders, beyond the
extent of the text, where the folios were imaged less densely.

We can also see that the anisotropy tends to be greatest
inside creases and on the sides of ridges where the folio is
likely to be imaged at a more acute angle. This can be seen
in Figure 9 which shows the inside of a very narrow crease.
The anisotropy is high since there is no way to image this
area in a fronto-parallel manner, but even still we manage
to achieve a high effective DPI.

6. CONCLUSION
We have proposed a pipeline for imaging and reconstruction
of historical documents, particularly those with complex ge-
ometric distortions which would be difficult to capture using
standard document scanning methods. We also proposed
an intuitive visualisation of the spatially-varying sampling
density, providing a means to gauge data quality with respect
to archival standards.

Our imaging approach uses a single hand-held camera to
capture a set of overlapping images which fully captures the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 10: Comparing the output of our reconstruction pipeline with the output of 123D Catch. Left: Output of our
reconstruction pipeline Right: Output of 123D catch
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Figure 11: For eight folios we visualise the local effective DPI (left column within each box) and sampling anisotropy (right
column within each box) over the folio surface alongside plots of the distributions of these quality metrics.
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document surface. This approach gives the flexibility to adapt
the imaging procedure to a wide variety of document surface
shapes, in a way that a fixed camera arrangement cannot.
Since the process does not require specialist equipment, such
as structured-light or laser scanners, or large imaging rigs
containing many cameras, it could be easily adopted by
other archives or museums who are likely to have access to a
high-resolution SLR camera.

The reconstruction method generates a high resolution tex-
tured 3D model of the document, meeting quality require-
ments of professional conservation and archival applications.
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