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Abstract

We present a novel skin reflectance model for faces and its application to face appearance edit-
ing. We decompose the high-dimensional bidirectional scattering surface reflectance distribution
function (BSSRDF) of skin into components that can be estimated from measured data. Our
model is intuitive, amenable to interactive rendering, and easy to edit. High-quality renderings
come close to reproducing real photographs. We have measured 3D face geometry, skin re-
flectance, and subsurface scattering for a large group of people using custom-built devices and
fit the data to our model. The analysis of the reflectance data reveals variations according to sub-
ject age, race, gender and external factors (heat, cold, makeup, etc.) We derive a low-dimensional
model using non-negative matrix factorization (NMF) that spans the space of skin reflectance in
our database. A user can define meaningful parameters in this space - such as race, gender, and
age - and change the overall appearance of a person (e.g., making a Caucasian face look more
Asian) or change local features (e.g., adding moles, freckles or hair follicles).
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Figure 1: A face rendered and edited using our skin reflectance model. From left to right: Real photograph; rendering; making the face more
tanned; adding hair follicles in the beard area; making the skin darker.

Abstract

We present a novel skin reflectance model for faces and its ap-
plication to face appearance editing. We decompose the high-
dimensional bidirectional scattering surface reflectance distribution
function (BSSRDF) of skin into components that can be estimated
from measured data. Our model is intuitive, amenable to interactive
rendering, and easy to edit. High-quality renderings come close to
reproducing real photographs. We have measured 3D face geom-
etry, skin reflectance, and subsurface scattering for a large group
of people using custom-built devices and fit the data to our model.
The analysis of the reflectance data reveals variations according to
subject age, race, gender, and external factors (heat, cold, makeup,
etc.) We derive a low-dimensional model using non-negative matrix
factorization (NMF) that spans the space of skin reflectance in our
database. A user can define meaningful parameters in this space –
such as race, gender, and age – and change the overall appearance of
a person (e.g., making a Caucasian face look more Asian) or change
local features (e.g., adding moles, freckles, or hair follicles).

Keywords: Face Modeling, Reflection Models, Data-Driven Mod-
els

1 Introduction

One of the most difficult computer graphics challenges is creating
realistic human faces. Humans have evolved to be incredibly adept
at interpreting facial appearance. For example, we can easily dis-
tinguish if a person is tired, hot, excited, or sick. Although a lot of

effort has been devoted to face modeling in computer graphics, no
synthetic face model to date achieves this level of expressiveness
and realism.

In this paper, we focus on modeling skin reflectance of human
faces, an important aspect of face appearance. It varies for differ-
ent people (e.g., due to race or gender) and even varies for the same
person throughout the course of a day (e.g., hot vs. cold skin). A re-
alistic skin reflectance model should be able to accommodate these
variations. It should also allow a graphic artist to change the appear-
ance of skin based on easy to interpret parameters (e.g., race, gen-
der, or age). The model needs to easily connect to measurements
of real faces for the creation of virtual doubles. Images generated
from the model – ideally in real-time – need to look photorealistic
from arbitrary viewpoints. And the model should allow easy modi-
fication or transfer of skin appearance.

To achieve these goals we have developed a novel skin re-
flectance model whose components can be robustly estimated from
measured data. Our model is accurate, compact, and intuitive to
edit. It can be used in interactive and offline rendering systems and
generates results that come close to reproducing real photographs.
We use custom-built devices to measure in-vivo light reflection and
subsurface scattering of a large and diverse group of people. 1 Our
data ranges across age (13 to 74 years old), gender, race, and exter-
nal factors (e.g., cosmetics, cold, and sweat). We fit our model to
the measured data and compute a low-dimensional face reflectance
space using non-negative matrix factorization (NMF) [Lee and Se-
ung 1999]. User-defined parameters – such as gender, race, or tan
– allow us guide the interpolation of reflectance data to change the
appearance of a face overall or locally.

2 Previous Work

Properties of human skin have been measured and studied exten-
sively in the biomedical, cosmetics, and computer vision commu-
nities. In this section we provide an overview of the relevant work
in the area of computer graphics and image synthesis.

1At the time of submission we measured over 85 subjects. The face-
scanning project is ongoing and the database continues to grow.
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Analytic Skin Reflectance Models: Analytic reflectance mod-
els are attractive because of their computational efficiency. Han-
rahan and Krueger [1993] modeled single-scattering of light in
skin composed of multiple smoothly-bounded internal layers. Ng
and Li [2001] extended this model by adding an oil layer to the
skin surface. Stam [2001] developed an analytic approximation
to multiple subsurface scattering in skin with a rough surface.
More recent work [Krishnaswamy and Baranoski 2004] proposes
a biophysically-based multi-layer model for image synthesis with
biologically meaningful parameters.

Several skin modeling approaches use analytic bidirectional sur-
face reflectance functions (BRDFs) [Blanz and Vetter 1999; De-
bevec et al. 2000; Haro et al. 2001; Paris et al. 2003; Tsumura et al.
2003; Fuchs et al. 2005]. The BRDF parameters can be estimated
from reflectance measurements using non-linear optimization. Al-
though a BRDF describes local light transport at each surface point,
it ignores subsurface scattering, which is largely responsible for the
appearance of skin.

Jensen et al. [2001; 2002] propose an analytic model for the bidi-
rectional surface-scattering distribution function (BSSRDF). The
BSSRDF describes the full effect that incident light at a point has
on the reflected light from a surface patch around that point. The
BSSRDF is eight-dimensional, assuming a two-dimensional para-
meterization of the surface. Because dense sampling of an eight-
dimensional function is challenging, we subdivide the BSSRDF
into components that can be more easily measured (see Section 3).

Non-parametric Skin Reflectance Models: Instead of fitting an
analytic BRDF model, Marschner et al. [1999] estimate a non-
parametric BRDF of a human face by combining reflectance sam-
ples from different points on the surface. They later extended this
work by adding a detailed albedo texture [Marschner et al. 2000].
They observe that the BRDF of skin is quite unusual and exhibits
strong forward scattering at grazing angles that is uncorrelated with
the specular direction.

We use the data-driven BRDF model of Matusik et al. [Matusik
et al. 2003] to estimate a non-parametric surface BRDF at each sur-
face point. We found that this introduces less error than imposing
the behavior of a particular analytic BRDF model. More impor-
tantly, it does not require non-linear optimization and leads to a
more robust fitting procedure.

Image-based Face Modeling: Image-based methods have pro-
vided highly realistic representations for human faces. They easily
capture effects such as self-shadowing, inter-reflections, and sub-
surface scattering [Pighin et al. 1998]. Recent efforts allow vari-
ations in lighting [Georghiades et al. 1999; Debevec et al. 2000],
viewpoint, and expression [Hawkins et al. 2004]. Cula et al. [2005;
2004] collected a database containing more than 3500 skin texture
images that were taken under various illumination and viewing con-
ditions [Rutgers ]. However, the memory requirements for image-
based models are large. The measurement procedures are inefficient
and assume non-local low-frequency lighting. Pure image-based
representations are also inherently difficult to edit and modify.

Borshukov and Lewis [2003] combine an image-based model, an
analytic surface BRDF, and an approximation of subsurface scat-
tering to create highly realistic face images for the movie Matrix
Reloaded. Sander et al. [2004] developed a variant of this method
for real-time skin rendering on modern graphics hardware.

An interesting image-based method was presented by Tsumura
et al. [2003], who use independent component analysis (ICA) to
decompose images of faces into layers (melanin and hemoglobin).
Their method is capable of re-synthesizing new images while
adding effects like tanning or aging.

3 Skin Reflectance Model

Overall skin reflectance can be described as the sum of specular
reflection on the skin surface (air-oil interface) and diffuse reflec-
tion due to subsurface scattering (see Figure 2). Diffuse subsurface

Oil Layer - Reflection

Epidermis - Absorption

Dermis - Scattering

Surface BRDF

Albedo Translucency

Diffuse Reflectance

Figure 2: Skin reflectance can be explained by a specular (BRDF)
component at the air-oil interface, and a diffuse reflectance com-
ponent due to subsurface scattering. Most of the high-frequency
spatial color variation in human skin is due to the epidermal layer,
whereas strong light scattering in the dermal layer is a more slowly
varying effect. We model the first (high-frequency) effect with an
albedo map and the second (low-frequency) light transport with a
translucency map.

scattering is due to absorption and light scattering in the epidermal
and dermal skin layers. The epidermis scatters light strongly and
contains melanin (along the interface to the dermis layer), which is
highly absorbing. This absorption component is a local effect with
high spatial variation across the face due to hair follicles, sweat
glands, freckles, dimples, etc. The dermis/blood layer is highly
scattering in the red channel and strongly absorbing in the green
and blue channels (mainly due to haemoglobin). The dermal light
scattering is a non-local, slowly varying effect.

We model the light that is immediately reflected from the oil-
skin layer with a spatially-varying surface BRDF and divide diffuse
subsurface reflectance into two components: A diffuse albedo map
that captures high-frequency color variations due to epidermal ab-
sorption and scattering, and a translucency map that captures low-
frequency absorption and scattering in the dermal layer. Fine-scale
face geometry is represented by a normal map.

More formally, we denote the BSSRDF as S(xi,ωi,xo,ωo),
where ωi is the direction of the incident illumination at point xi,
and ωo is the observation direction of radiance emitted at point xo.
Similarly, we use fs(xi,ωi,ωo) for the surface BRDF. The relative
contributions of the surface BRDF and the diffuse reflectance due
to subsurface scattering are modulated by Fresnel coefficients:

Sskin = Ft(η ,ωi)S(xi,ωi,xo,ωo)Ft(η ,ωo) , (1)

fskin = Fr(η ,ωi) fs, (2)

where Fr and Ft = (1−Fr) are the Fresnel coefficient at the air-skin
boundary for both the incoming and outgoing radiance, and η is the
relative index of refraction between skin and air (� 1.3). We model
the subsurface scattering term S using the dipole diffusion approxi-
mation [Jensen et al. 2001], while the specular BRDF component fs
is modeled using a data-driven approach. The parameters of both
the BSSRDF and the BRDF are estimated from measurements as
described in the following sections.

4 Measurement Procedure Overview

A block diagram of our measurement pipeline is shown in Figure 3.
We capture the 3D geometry of the face using a commercial 3D
face scanner. Digital photographs from different viewpoints and
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Figure 3: A block diagram of our data processing pipeline. Blocks
in grey are the parameters of our skin reflectance model.

with different illumination directions are taken in a calibrated face-
scan dome. The data is used to compute a normal map and to esti-
mate the diffuse reflectance at each surface point. We subtract the
diffuse reflectance from the measured data and fit a set of densely-
measured BRDFs to the remaining surface reflectance. We com-
press the BRDF basis using NMF to derive a small set of NMF
basis BRDFs. We then measure the subsurface scattering of skin at
few locations in the face using a special contact device and estimate
skin translucency.

To map between 3D face space and texture space we use the
area-preserving texture parameterization of Desbrun et al. [2002].
The data is densely interpolated using push-pull interpolation into
texture maps of 2048×2048 resolution. The parameters of our re-
flectance model are the NMF basis BRDFs (typically four), textures
with coefficients for the linear combination of basis BRDFs, one
albedo map with diffuse reflectance values, and one translucency
map. The following sections describe each of these processing steps
in more detail.

5 Measuring Skin Reflectance

Figure 4 shows a photograph of our face-scanning dome. The sub-

Figure 4: The face-scanning dome consists of 16 digital cameras,
150 LED light sources, and a commercial 3D face-scanning system.

ject sits in a chair with a head rest to keep the head still during the
capture process. The chair is surrounded by 16 cameras and 150
LED light sources that are mounted on a geodesic dome. The sys-
tem sequentially turns each light on while simultaneously capturing

images with all 16 cameras. We capture high-dynamic range (HDR)
images [Debevec and Malik 1997] by immediately repeating the
capture sequence with two different exposure settings. The com-
plete sequence takes about 25 seconds for the two passes through
all 150 light sources (limited by the frame rate of the cameras). To
minimize the risk of light-induced seizures we ask all subjects to
close their eyes. We report more details about the system and its
calibration procedure in [Anonymous 2005].2

A commercial face-scanning system from 3QTech
(www.3dmd.com) is placed behind openings of the dome.
Using two structured light projectors and four cameras, it captures
the complete 3D face geometry in less than one second. The output
mesh contains about 40,000 triangles and resolves features as
small as 1 mm. We clean the output mesh by manually cropping
non-facial areas and fixing non-manifold issues and degenerate tri-
angles. The cleaned mesh is refined using Loop-subdivision [Loop
1987] to obtain a high-resolution mesh with 500,000 to 1 million
vertices. The subdivision implicitly removes noise. We store
the high-resolution mesh as an unstructured list of point samples
(surfels) without connectivity. Each surfel stores the necessary in-
formation for image reconstruction using EWA splatting [Zwicker
et al. 2002].

Next, we compute a lumitexel [Lensch et al. 2001] at each sur-
fel position from the image reflectance samples. Each observed
radiance value L(ωo) is normalized by the irradiance, Ei(ωi), of
the corresponding light source l in order to obtain a BRDF sample
value:

fr(ωi,ωo) =
L(ωo)
Ei(ωi)

(3)

We calibrated the BRDF measurements using Fluorilon — a ma-
terial with know properties [Anonymous 2005]. All processing is
performed on RGB data except where noted otherwise.

We determine lumitexels in shadow areas by rendering the
face from camera and light source viewpoints using EWA splat-
ting [Zwicker et al. 2001]. EWA filtering guarantees that each sur-
fel splat covers at least one pixel. The percentage of visible pixels
per splat is approximated by the ratio of total rasterized pixels to
effectively blended pixels. If this percentage is above a threshold
we mark the surfel as visible from that camera or light source. This
process of determining visibility and occlusion is similar to shadow
mapping [Williams 1978], but using EWA splatting.

Figure 5 shows a visualization of lumitexels from two different
points in the same face. The images give an impression of the hemi-

Figure 5: Visualization of two skin lumitexels for different view-
points. Only the samples for a single camera are shown. The red
and green dots are the intersection of the view vector and reflec-
tion vector with the hemisphere, respectively. Reflectance values
for each light position (blue dots) are used to shade the hemispher-
ical triangulation. Note that the reflection direction corresponds
well with the specular highlight on the left. The right lumitexel is
more diffuse, and some light positions are occluded by the nose.

spherical sampling for each camera viewpoint. On average, a lumi-

2This technical report has been submitted as supplemental material.
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Figure 6: Facial detail shown in closeups of two normal maps.

texel contains about 900 reflectance samples per color channel, with
many lumitexels having up to 1,200 samples. The numbers vary de-
pending on the occlusions across the face (see Figure 5). In contrast
to previous work [Marschner et al. 1999; Lensch et al. 2001; Fuchs
et al. 2005], we collect enough samples for a reliable BRDF fit at
almost all lumitexels without clustering. The data for lumitexels
with a badly conditioned fit is interpolated during creation of the
texture maps.

6 Estimating Normals and Diffuse Albedo

We estimate normals at each lumitexel from the reflectance data.
For each camera viewpoint, we determine the direction of maxi-
mum reflectance by interpolation between the directions of the four
brightest measurements. The half-way vector between this direc-
tion and the viewing vector is the normal estimate for this view-
point. We then remove outliers from the set of normals from all
viewpoints and interpolate the final surfel normal. This normal
estimation procedure is stable and leads to good results consider-
ing the precision of our measurements (see Figure 6). However,
real-world reflections are off-specular, i.e., they are not necessarily
aligned with the mirror direction. To improve the normal estima-
tion further we could use photometric stereo methods [Goldman
et al. 2003].

To separate specular surface reflectance from diffuse subsurface
reflectance at each surfel we use the diffuse BRDF approximation
of the BSSRDF by Jensen et al. [2001]:

Sbrd f (x,ωi,ωo) =
Rd

π
, (4)

where Rd is the diffuse reflectance:

Rd =
α ′

2
(1+ e−

4
3

1+Fr
1−Fr

√
3(1−α ′))e−

√
3(1−α ′) . (5)

Rd depends only on the reduced albedo α ′ and the Fresnel terms.
The BRDF approximation is equivalent to the full BSSRDF for a
semi-infinite plane of homogeneous, almost opaque material under
uniform incident illumination. Intuitively, under these assumptions
we cannot distinguish if photons enter the surface, scatter, and re-
emit as diffuse light, or if they are immediately reflected at a point
from a diffuse surface. We found this approximation to be relatively
accurate for the diffuse reflectance component of our skin model.
Any remaining error will show up as a diffuse component in the
surface BRDF.

We estimate Rd at each surface point from the lumitexel data.
Based on the assumption that we observe pure diffuse reflectance
for at least some of the observation angles,

We are looking for the maximum value Rd that is less than or
equal to the minimum of the observed BRDF values fr. This is
done by determining the minimum ratio between fr and the unit
diffusion reflectance:

Rd = min
i

π fr(ωi,ωo)
Ft(η ,ωi)Ft(η ,ωo)

. (6)

Note that we divide the observed BRDF by the Fresnel coefficients
in accordance with Equation (2) as we compute the diffuse com-
ponent using the BSSRDF. In order to reduce outliers and the in-
fluence of motion artifacts, we determine a stable minimum by pe-
nalizing grazing observations and discarding the k smallest values.
The Rd values for each surface point are re-parameterized and in-
terpolated into the albedo map.

7 Computing a Basis for Surface BRDFs

The interface reflection is computed from each lumitexel by sub-
tracting the diffuse reflectance: Ri = R−Rd . Instead of fitting an
analytic reflectance model to this data [Fuchs et al. 2005] we use
the data-driven BRDF model of Matusik et al. [2003]. The goal is
to express the data R′

i as a linear combination of densely measured
basis BRDFs. We use 59 basis BRDFs of dielectric materials that
are related to human skin, such as paints, fabrics, organic materi-
als, and leather. Each basis BRDF consists of over four million
samples.

To account for the area of the light source, we convolve each
basis BRDF by a disk-shaped filter kernel. This works because
each light source spans approximately the same solid angle when
viewed from any point on the face.

Let ϑl be the angle between illumination direction and surface
normal. Rather than normalizing the observed reflectance samples
by dividing them with cosϑl , we multiply the basis BRDFs by this
factor. This minimizes the influence of noise and quantization arti-
facts at grazing angles.

Assume we have n observed reflectance samples Ri(ω i
i ,ω

i
o) and

m basis BRDFs M j. We construct an n×m matrix M where the
elements in the i-th row and j-th column are:

Mi j = cosϑlM
j(ω i

i ,ω
i
o) . (7)

We now solve for the vector x in the system:

Mx = R s.t. xi ≥ 0 , (8)

where R is an n × 1 column vector with elements Ri. We use
quadratic programming to solve this over-constrained least-squares
problem. The resulting xi are the coefficients of the linear combi-
nation of basis BRDFs that best reproduce the lumitexel data. We
found that constraining the coefficients to be positive is very impor-
tant for the stability of the solution. To further improve the results
we take the cubic root of the elements in M and R. This transforms
the basis BRDFs and reflectance values into a more perceptually
appropriate space where highlights are not oversaturated.

Highlights on dielectric materials like skin are of the same color
as the light source (white, in our case). Consequently, we can use
monochrome basis BRDFs. This reduces the degrees of freedom
by a factor of three and increases the stability of the fit.

The 59 basis BRDFs are not specific to human skin – they are
capable of representing reflectance of a much wider range of ma-
terials [Matusik et al. 2003]. We use dimensionality reduction to
discover a smaller linear basis that is specific to human skin. We
apply NMF to the vector x of positive coefficients at each surface
point independently. Unlike principle-component analysis (PCA),
the NMF basis is not orthogonal. However, the original data can be
expressed as positive linear combinations of the NMF basis vectors.
That is, when fitting reflectance data to the reduced NMF basis, we
can still perform non-negative least squares optimization. Using
PCA we would have to allow for negative coefficients, leading to
over-fitting and visible artifacts like “negative highlights” [Matusik
et al. 2003].

To determine the smallest NMF basis that is necessary to rep-
resent the data well we plot the reconstruction error as a function
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of the number of NMF basis BRDFs (see Figure 15). There is a
considerable fall-off in the sequential values seen in this plot. The
plateau for a single person is reached around four basis BRDFs
when the relative reconstruction error does not change much any-
more. Figure 7 shows synthesized images of a face using different
numbers of NMF basis BRDFs. As expected, the results do not im-

Figure 7: Synthetic images of a face using, from left to right, 1,
2, 4, and 24 NMF basis BRDFs. Top: Rendered images. Bottom:
Surface reflection only. Four NMF basis BRDFs are sufficient to
represent the surface reflectance of a single person.

prove much beyond four NMF basis BRDFs. All renderings shown
in this paper (except where noted) were produced using four NMF
basis BRDFs. The coefficients for each surface point are stored in
four BRDF coefficient textures. In addition, we store the four NMF
basis BRDFs per face. We analyze a more general BRDF basis for
a large population of people in Section 10.1.

8 Measuring Translucency

Our subsurface measurement device is an image-based version of
a fiber optic spectrometer with a linear array of optical fiber detec-
tors [Nickell et al. 2000] (see Figure 8). Light from a white LED

Figure 8: Left: A picture of the sensor head with linear fiber array.
The source fiber is lit. Right: The fiber array leads to a camera in
a light-proof box. The box is cooled to minimize imaging sensor
noise.

is coupled to a source fiber. The alignment of the fibers is linear
to minimize sensor size. A sensor head holds the source fiber and
28 detection fibers. A digital camera records the light collected by
the detector fibers. The camera and detector fibers are encased in
a light-proof box with air cooling to minimize imager noise. We
capture 23 images bracketed by 2/3 f-stops to compute an HDR im-
age of the detector fibers. The total acquisition time is about 88
seconds.

Figure 9 shows the sensor head placed on a face. We found that
pressure variations on the skin caused by the mechanical movement
of the sensor head influence the results. To maintain constant pres-
sure between skin and sensor head we attached a silicone membrane
connected to a suction pump. This greatly improves the repeatabil-
ity of the measurements. For more details on the subsurface device
and calibration procedure see [Anonymous 2005].

Figure 9: Left: The sensor head placed on a face. Top: Sensor fiber
layout. The source fiber is denoted by a cross. Bottom: An HDR
image of the detector fibers displayed with three different exposure
values.

Previous work in diffuse reflectometry [Nickell et al. 2000] sug-
gests that some areas of the human body exhibit anisotropic subsur-
face scattering (e.g., the abdomen). We measured two-dimensional
subsurface scattering on the abdomen, cheek, and forehead for a
few subjects. We verified the presence of significant anisotropy in
the abdominal region (see Figure 10). However, the plots show

Figure 10: Subsurface scattering curves for abdomen, cheek, and
forehead measured along 16 1D profiles.

that the diffuse subsurface scattering of facial skin can be well ap-
proximated with an isotropic scattering model. Consequently, we
measure only a one-dimensional profile and assume rotational sym-
metry.

We fit the analytic BSSRDF model of Jensen et al. [2001] to
the data points of each subsurface measurement, providing us with
the reduced scattering coefficient σ ′

s and absorption coefficient σa.
Note that these parameters also captures high-frequency albedo
variations (redness, freckles etc.) However, it would be impracti-
cal to measure them densely across the face using our sensor head.
Instead, we rely on the high-resolution photographs from the face-
scanning dome to estimate diffuse albedo (see Section 6) and use
the sensor head to measure slowly varying translucency. We have
chosen to measure three points where the sensor head can be placed
reliably: forehead, cheek, and below the chin. For hygienic reasons
we do not measure lips.

From the measured σa and σ ′
s data we derive the effective trans-

port coefficient:

σtr =
√

3σa(σa +σ ′
s) ≈ 1/�d , (9)

with �d the diffuse mean free path. �d or 1/σtr provides a measure
of skin translucency. We found that it shows little variation across
a face. We interpolate 1/σtr from the three measurements to obtain
a dense translucency map for the face.

9 Rendering

We implemented our reflectance model in a high-quality Monte
Carlo ray tracer for offline rendering. For interactive rendering of
our model we use the approach by Kautz and McCool [1999]. 3

3See companion video.
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Nbr. of External Race Gender Age
Subjects Factors

Dataset A
1 Normal / Cold Caucasian Male 31

Hot / Sweat
Lotion / Makeup

Powder
Dataset B

50 Normal Caucasian Male 13-59
5 Normal Caucasian Female 24-55
6 Lotion / Makeup Caucasian Female 23-56
20 Normal Asian Male 22-74
4 Normal Asian Female 22-65
2 Lotion / Makeup Asian Female 24-30

Table 1: Relevant information about our collected data.

The inputs for both systems are four textures with the coefficients
of the NMF basis BRDFs, the four NMF basis BRDFs, the albedo
map (Rd), and the translucency map (1/σtr).

To achieve high-quality images we use the analytic BSSRDF ap-
proximation by Jensen et al. [2001]. We transform the Rd values
of the albedo map to apparent albedo values α ′ by inverting Equa-
tion (5). We derive the model parameters σ ′

s and σa from σtr us-
ing [Jensen and Buhler 2002] σ ′

s = α ′σ ′
t and σa = σ ′

t −σ ′
s, with

σ ′
t = σtr/

√
3(1−α ′). Surface reflectance at each surface point is

computed using a linear combination of the NMF basis BRDFs.
We show the comparisons between real and synthetic images for

different faces and different viewpoints in Figure 11. The camera
and light source calibrations of the dome were used to reproduce
identical conditions. We observe that our model reproduces the
photographs very well, including the shape of the specular high-
lights. Figure 12 shows another example, including renderings of
the different components in our model.

10 Skin Reflectance Analysis

We now present an analysis of the three components of our face
reflectance model for different external conditions and for a large
population of people of different gender, race, and age. Table 1
shows the relevant information for the data we collected. To date,
we captured 87 people: 70 male and 17 female. The data is heav-
ily skewed towards male Caucasians and does not currently contain
any African Americans. Our data collection effort will be ongoing
for the foreseeable future. Because each capture session takes about
30 minutes we could not capture all individuals under all external
conditions. Instead, we first analyze how various external condi-
tions affect one person (dataset A), and then analyze the remaining
subjects (dataset B). Some women in dataset B wore makeup or fa-
cial lotion. Figure 13 shows a few representative subjects in dataset
B.

Figure 13: Representative subjects in dataset B.

Our model treats each component independently, allowing us to

render or edit each one without affecting the other two. Conse-
quently, we analyze each component separately and do not con-
sider the correlation between them. In the future we would like
to perform a more in-depth statistical analysis that takes cross-
correlations into account.

10.1 Analysis of Surface BRDFs

Surface BRDFs capture the monochrome light reflection on the oil-
skin layer. They can be represented with a low-dimensional NMF
basis of densely-sampled BRDFs. The effect of the surface BRDF
on overall appearance is relatively pronounced, especially for dif-
ferent external conditions (dataset A) (see Figure 19).

To analyze the surface BRDFs of dataset A we randomly chose
5,000 points and fit the complete non-parametric BRDF basis as
discussed in Section 7. We then computed the average of the co-
efficients of all 5,000 points. Figure 14 shows the average BRDF
for each external condition applied to a sphere and lit with point
light sources from two different directions. As expected, there are
noticeable differences between these BRDFs, especially between
lotion / hot and cold / powder.

To analyze the space of surface BRDFs of a larger population, we
fit our non-parametric BRDF model to 5,000 (dataset A) or 2,000
(dataset B) randomly chosen points, respectively. Similar to the
approach in Section 7 we applied NMF dimensionality reduction
to obtain a low-dimensional manifold that characterizes the BRDF
space for each dataset. Figure 15 shows relative reconstruction er-
ror as a function of the number of basis BRDFs for one person,
dataset A, and dataset B, respectively. To show the three curves in

0 2 4 6 8 10 12 14 16
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NMF Dimensionality

Single scan
Dataset A
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Figure 15: Reconstruction error as a function of the number of
NMF basis.

the same plot we normalized the relative errors to a common scale.
As expected, the plot suggests that four NMF basis BRDFs are suf-
ficient for one person, whereas dataset A requires six and dataset
B requires at least eight NMF basis BRDFs. Matusik et al. [2003]
concluded that a 45-dimensional linear (PCA) basis is required to
span the space of isotropic BRDFs. Our results suggest that BRDFs
representing skin are a small subset of all isotropic BRDFs.

10.2 Analysis of Diffuse Albedo Maps

The diffuse albedo is the component of our model that captures
most of the intra-personal and extra-personal variations. Small-
scale intra-personal albedo variations are due to skin imperfections,
markings, scars, etc. and typically show high spatial frequency
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Figure 11: Comparison of real photographs of five subjects (top) with fits to our model (bottom).

Figure 12: Components of our model. (a) One of the input images with single light source illumination. (b) 3D surface scan shaded with the
BRDF approximation of the diffuse subsurface term. The model is lit using the camera and light source calibration derived for view (a). (c)
Subtracting the estimated diffuse reflection term (b) from (a) reveals surface reflection. (d) Reconstructed model. (f) Reconstructed surface
reflection.

Normal Lotion Cold Hot Make-up Sweaty Powder
Figure 14: Visualization of the average surface BRDF for dataset A. Top: Back lighting from grazing angle. Bottom: Front lighting from
lower left.

7
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across the face. Overall extra-personal albedo variations are mainly
due to race, gender, tanning, or other external factors.

We first transform all albedo maps in each dataset into a common
and decorrelated color space using the method discussed in [Heeger
and Bergen 1995][Section 3.5]. In the following analysis we
process each transformed color channel independently.

An albedo map bears many similarities to a stochastic image tex-
ture. Consequently, we apply the texture analysis method of Heeger
and Bergen [1995]. We compute statistics (histograms) of the origi-
nal albedo map at full resolution, and of filter responses at different
orientations and scales organized as a steerable pyramid [Simon-
celli and Freeman 1995]. We use seven pyramid levels with four
oriented filters, and down-sample the albedo map by a factor of
two at each level. Each histogram has 256 bins. The histograms
of all filter responses including a low-pass and a high-pass (30 to-
tal) and the histogram of the original albedo map are concatenated
into a 256×31×3 = 23,808 element vector H. This vector can be
viewed as a generative model of a texture for a given person. For
example, we can use this vector for albedo transfer between two
subjects using histogram matching [Heeger and Bergen 1995] (see
Section 11).

Figure 16 shows color histograms of the original albedo map
averaged over different groups of people in dataset B. For clarity
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Figure 16: Average color histograms for different race and gender
groups in dataset B. Subsequent plots show, from right to left, data
for red, blue, and green channels (also indicated by the line colors).

we used the original RGB space to compute these histograms. As
expected, the plots show a different color distributions depending
on race and gender.

To analyze the extra-personal variations, we resample the albedo

maps of dataset B into a common (u,v) parameter space using
point-correspondences (20 feature points per face) and radial basis
function interpolation [Pighin et al. 1998]. To obtain reliable sta-
tistics we cluster points in corresponding face regions. Currently,
we only specify beard versus no-beard regions, but one could use
a finer granularity and distinguish between chin, cheek, forehead,
nose, eyelid, and beard areas. For each face i and each region r we
compute a histogram vector Hr

i as described above. All vectors Hk
i

for a specific region k are stored as column vectors in a matrix Mh.
For example, Mh for the beard regions in dataset B has dimensions
87× 23,808 (there are 87 subjects in dataset B). We can now run
PCA on matrix Mh to compute a region-specific basis for albedo
map histograms. Each point in this reduced space corresponds to
the albedo of a particular person. We will use this PCA basis to
synthesize new albedo maps in Section 11.

Cula and Dana [Cula and Dana 2002] use a very similar method
to analyze bi-directional texture functions (BTFs) of a collection
of skin patches. However, they do not use their model for image
synthesis.

10.3 Analysis of Translucency

The translucency component accounts for non-local subsurface
scattering in the epidermis and dermis. It is a slowly varying effect
that is responsible for much of the red color and soft shadows we
see in human faces. It is important to note that translucency cannot
be estimated directly from images, which is why we additionally
use subsurface measurements.

Table 2 shows the mean and variance of σtr for dataset B. The

σtr Cheek Forehead Neck
(mm−1) Mean Var. Mean Var. Mean Var.
red 0.5572 0.1727 0.5443 0.0756 0.6911 0.2351
green 0.9751 0.2089 0.9831 0.1696 1.2488 0.3686
blue 1.5494 0.1881 1.5499 0.2607 1.9159 0.4230

Table 2: Mean and variance of σtr for dataset B.

measurement points on cheek and forehead are quite similar in
translucency. The measurement point on the neck underneath the
chin shows a rather different mean, but also higher variance. This
is probably due to measurement noise, as the sensor head is hard
to place there. Overall, translucency values do not vary much be-
tween measurement points and between individuals. In practice,
one could approximate it using a single value for the whole face.

Figure 17 shows closeups of the subjects with minimum (0.3558,
0.7932, 1.5173) and maximum (0.9171, 1.5682, 1.6569) values for
σtr in dataset B. Note that we define translucency as 1/σtr. There

Figure 17: Photographs of subjects with minimum (left) and max-
imum (right) translucency values in dataset B. The differences at
shadow boundaries are subtle.

are subtle differences visible at shadow boundaries. Figure 18
shows closeups computed with our model using the same minimum

8
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and maximum translucency values. Note that the model is capable

Figure 18: Synthetic images with minimum (left) and maximum
(right) translucency values.

of reproducing the subtle differences of Figure 17.

11 Face Editing

Similar to previous work [Pellacini et al. 2000; Matusik et al. 2003]
we define meaningful parameters for face editing. The user assigns
arbitrary traits to each face using binary classification (trait present
or not). We use normal, cold, hot, sweat, lotion, makeup, powder
for dataset A, and Asian, Asian-Subcontinental, Caucasian, male,
female for dataset B. The user can choose a face and change its
reflectance properties according to any of the defined traits, e.g.,
making a face look more tanned. We apply this general idea to sur-
face BRDFs and albedo maps. Translucency maps could be handled
in a similar way, if desired.

Similar to [Blanz and Vetter 1999; Matusik et al. 2003] we use
mean differences to navigate the low-dimensional spaces of surface
BRDFs (using their NMF basis) and albedo histograms (using their
PCA basis). We compute the average of the basis vectors in each
complementary pair of clusters associated with a trait (i.e., those
faces with, and those without). The differences between the com-
plement averages provide trait vectors that can be used for naviga-
tion and interpolation between traits. I.e., we use convex combina-
tions of trait vectors and apply them to the data of a source face.

Specifically, we compute trait vectors for the NMF basis of sur-
face BRDFs in dataset B (see Section 10.1). To compute a new
(target) BRDF, we apply a linear combination of the trait vectors to
the BRDF coefficients of a source face.

Figure 19 shows progressions of adding different traits to source
faces. The last row in the figure shows an example where we change
the surface BRDF using the “lotion” trait. The albedo map and
translucency remain constant in this case.

For albedo map changes we compute trait vectors using the PCA
basis of albedo histograms (see Section 10.2). A linear combina-
tion of trait vectors is applied to a basis histogram vector H of a
source face, resulting in a target histogram vector H ′. We then ap-
ply the histogram-matching technique of Heeger and Bergen [1995]
to match H to H ′. We either use the basis histograms of the whole
albedo map or of facial regions (beard versus no-beard area).

Note that Heeger and Bergen start their texture synthesis with a
noise image as the source. We could do the same (with satisfactory
results). However, for most applications it makes more sense to
start from an original albedo map. To allow for sufficient variation
during histogram matching, we add some noise to the source albedo
map before we compute its histogram vector H.

Rows one through three in Figure 19 show examples of chang-
ing albedo maps and surface BRDFs using various trait vectors.
Translucency remains constant in all cases.

12 Conclusions and Future Work

In this paper we have proposed a simple and practical skin model
that is powerful enough to represent most aspects of facial skin ap-
pearance. We combine an analytic model for subsurface scattering
with a low-parameter non-parametric BRDF model. An important
feature of our model is that all its parameters can be robustly es-
timated from measurements. Renderings using our model are ca-
pable of reproducing photographs of real human faces taken under
arbitrary illumination and pose. We fit our model to data of a large
and diverse group of people. We have also addressed the problem
of editing facial reflectance. To accomplish this goal we have devel-
oped intuitive user parameters such as age, race, gender, tan-level,
etc.

Face appearance is of course not only determined by face re-
flectance. A lot of realism comes from facial hair, which is cur-
rently not represented at all in our model. We would like to de-
velop novel representations for eyebrows, eyelashes, mustaches,
and beards. Fine facial hair leads to the important “velvet” look
of skin near grazing angles [Koenderink and Pont 2003]. We would
like to extend our reflectance model to account for this effect. We
believe our methods could also be extended to model reflectance of
other important parts of the face, such as the eyes, lips, and teeth.

Head motion or slight changes in facial expressions lead to noise
in our reflectance measurements and to visible blur in renderings
from our model (e.g., near the lips). We are developing better pro-
cedures to detect registration errors and to improve the quality of
our measurements.

At the moment we do not consider global-illumination effects
such as inter-reflections or self-shadowing due to fine-scale geom-
etry. We would like to improve the estimation of reflectance com-
ponents by adding these effects by using methods similar to Yu et
al. [1999].
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