
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Motion Blur for EWA Surface Splatting

Simon Heinzle1 Johanna Wolf1 Yoshihiro Kanamori2 Tim Weyrich3 Tomoyuki Nishita4 Markus Gross1

1ETH Zurich 2University of Tsukuba 3University College London 4University of Tokyo

Abstract

This paper presents a novel framework for elliptical weighted average (EWA) surface splatting with time-varying
scenes. We extend the theoretical basis of the original framework by replacing the 2D surface reconstruction
filters by 3D kernels which unify the spatial and temporal component of moving objects. Based on the newly
derived mathematical framework we introduce a rendering algorithm that supports the generation of high-quality
motion blur for point-based objects using a piecewise linear approximation of the motion. The rendering algorithm
applies ellipsoids as rendering primitives which are constructed by extending planar EWA surface splats into the
temporal dimension along the instantaneous motion vector. Finally, we present an implementation of the proposed
rendering algorithm with approximated occlusion handling using advanced features of modern GPUs and show
its capability of producing motion-blurred result images at interactive frame rates.

1. Introduction

Point-based geometries have evolved into a valuable alter-
native to polygonal meshes because of their conceptual sim-
plicity and superior flexibility [GP07]. Point rendering is
particularly interesting for highly complex models whose tri-
angle representation requires millions of tiny primitives. The
projected area of those triangles is often less than a few pix-
els, resulting in inefficient rendering because of the overhead
for triangle setup and, more importantly, may lead to alias-
ing artifacts in cases where triangles get discarded during
rasterization. Well-established among point rendering meth-
ods is the technique of EWA surface splatting [ZPBG02]
which allows for rendering high-quality anti-aliased images
of geometric objects that are given by a sufficiently dense set
of sample points. The idea is to approximate local regions
of the surface by planar elliptical Gaussian reconstruction
kernels – so-called surface splats – in object space and then
render the surface by blending these splats in screen space.
The projected kernels are combined with a low-pass filter
such that sampling artifacts like holes or aliasing can be ef-
fectively avoided.

On the other hand, EWA surface splatting generates still
frames, which depict a perfect instant in time, lacking re-
alism and the sensation of dynamics due to the absence of
motion blur. The term motion blur denotes the visual effect
that appears in still images or film sequences when objects
moving with rapid velocity are captured. The image is per-
ceived as smeared or blurred along the direction of relative

Figure 1: EWA motion blur examples rendered with our
GPU implementation.

motion to the camera. The reason for this is that the image
taken by a camera in fact is an integration of the incoming
light over the period of exposure. This appears natural be-
cause the human eye behaves in a similar way. To achieve
this effect in computer graphics the most correct approaches
are either temporal supersampling, that is, producing frames
as a composite of many time instants sampled above the
Nyquist frequency, or - which is theoretically more justified
- bandlimiting the incoming signal before sampling to guar-
antee that its Nyquist frequency is met.

In this paper we propose a new method for applying mo-
tion blur to EWA surface splatting. We present a consis-
tent extension of the theoretical basis of the EWA splatting
framework in the time dimension to mathematically repre-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Heinzle et al. / Motion Blur for EWA Surface Splatting

sent motion-blurred images with point-sampled geometry.
The conceptual elegance of our approach lies in replacing
the 2D Gaussian kernels which continuously reconstruct the
point-sampled surface by 3D Gaussian kernels which unify
a spatial and temporal component. By use of these kernels
the scene can be reconstructed continuously in space as well
as time and the incoming signal can be bandlimited before
sampling to guarantee that its Nyquist frequency is met. The
derived result naturally fits into the EWA splatting algorithm
such that the final image can be computed as a weighted sum
of warped and bandlimited kernels.

Based on the developed mathematical framework, we in-
troduce a rendering algorithm with strong parallels to the
original EWA surface splatting. This algorithm applies el-
lipsoids with spatial and temporal dimensionality as new
rendering primitives. Specifically, the surface splats are ex-
tended by a temporal dimension along the instantaneous ve-
locity vector. The emerging ellipsoids automatically adapt to
the local length of the piecewise linearized motion trajectory.
Finally, we provide an approximation of the rendering algo-
rithm by the description of an entire point rendering pipeline
using vertex, geometry and fragment program capability of
current GPUs.

2. Related Work

Point-based Rendering: The possibility of using points
as rendering primitives was first suggested by Levoy
and Whitted [LW85] and has since been explored ex-
tensively [KB04, SP04]. While early point rendering
techniques [GD98, PZvBG00] proposed simple forward
mapping of points to the frame buffer, more advanced
techniques focused on anti-aliasing methods for points. The
EWA surface splatting algorithm [ZPBG02] is based on
Heckbert’s texture filtering approach [Hec89] and is a high-
quality rendering approach for point-sampled geometry.
EWA splatting has been implemented on conventional
GPUs either by employing textured quads to approximate
the points [RPZ02] or by making use of advanced features of
GPUs [ZRB∗04, BHZK05, ZP06, GBP06]. Recently, a ded-
icated hardware architecture for EWA surface splatting has
been presented [WHA∗07, HSA∗08]. Reconstruction meth-
ods for rendering point sets [ABCO∗01, GG07] have been
investigated as well, either through raytracing [AKP∗05] or
a dynamic upsampling approach which directly splats the
generated samples [GGG08].

Motion Blur: A well-argued discussion on motion blur
is provided by the work of Sung et al. [SPW02]. Here the
authors define the problem of motion blur based on the
rendering equation and categorize previous work accord-
ing to the respective approach to approximate this equation.
Monte Carlo integration methods such as Distributed Ray-
tracing [CPC84, Coo86] try to approximate the integral di-
rectly by stochastic supersampling. However, a large number
of samples is usually required to avoid excessive noise. In a
similar context the frameless rendering approach [BFMZ94]
simulates motion blur directly via immediate randomized
pixel updates directed by the rate of change. Haeberli and

Akeley [HA90] achieved motion blur by supersampling ras-
terized scenes at different time instants. Nevertheless, to
avoid banding artifacts the complete scene must be ren-
dered at a frequency higher than the Nyquist frequency of
the fastest motion. Recent work by Egan et al. [ETH∗09]
observed that motion blur is caused by a shear in the space-
time signal as well as in the frequency domain. The resulting
adaptive sampling scheme combined with a sheared recon-
struction filter then produces high-quality results with lower
sampling rates as previous supersampling methods.

Other work reduces the complexity of the problem by
making assumptions on the scene behavior and/or em-
ploying further simplifications. The work of Korein and
Badler [KB83] computes the exact per-pixel visible inter-
vals for each geometry element. Grant [Gra85] proposes a
4D representation for 3D polyhedra in linear motion to com-
pute temporally continuous visible polyhedra in 3D. Both
approaches rely on a temporal box filter and assume constant
shading over time.

Further methods are based on a geometric morphing of the
objects or the introduction of new geometry. In the case of
particle systems, [Ree83] suggests rendering particle points
as line segments. [Cat84] uses a circular filter at every pixel
and shows that motion blur can be achieved by morph-
ing the filter or, as he proposes, by morphing the objects.
[WZ96] approximate motion blur by constructing new semi-
transparent geometry without solving the visibility function
and inter-object relations.

Another field is constituted of various post-processing
techniques which operate on the synthesized images and dis-
regard the actual geometry. Potmesil and Charavarty [PC83]
produce motion blur by a convolution of the rendered still
image with a point spread function derived from the mo-
tion of the objects. The two-and-a-half-D motion blur al-
gorithm [ML85] handles multiple scene objects by con-
volving them individually, followed by a composition in
a back-to-front manner. In comparison, similar to other
post-processing techniques [Max90,Shi93,CW93], these ap-
proaches cannot adapt to local properties of the geometry
and cannot address the situation where moving objects can-
not be separated into non-overlapping layers in depth.

The work of [MMS∗98] proposes a splatting approach
for volumetric rendering and shows how motion blur can
be achieved by constructing new footprint functions based
on circular splats moving in the image plane. The work
of [GM04] extends this approach for EWA surface splatting
by focusing on strong motion hints instead of photo-realistic
motion blur. Their method combines a static image of the
scene with blurred motion hint ellipses constructed from the
original object using the motion vector.

3. Extended EWA Surface Splatting
To formulate the problem of motion blur we interpret an
image as a 2D signal in screen space. For an instantaneous
image at time t, the intensity at screen-space position x is
given by the continuous spatio-temporal screen-space signal
g(x, t). A motion-blurred image which captures the scene

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Heinzle et al. / Motion Blur for EWA Surface Splatting

over the exposure period T is represented by GT (x). The
intensity value at position x is generated by a weighted inte-
gration of incoming intensities over the exposure time:

GT (x) =
∫

T
a(t)g(x, t)dt , (1)

where a(t) denotes a time-dependent weighting function
used to model the influence of the camera shutter and the
medium which captures the scene. The process of generating
GT (x) can be considered as a resampling problem of g(x, t).

In the following subsections we extend the original EWA
framework [Hec89, ZPBG02] by a time dimensionality and
introduce a temporal visibility function to determine oc-
cluded surface parts. We then introduce three-dimensional
reconstruction kernels representing a local, linear approxi-
mation of the points’ motion trajectories, very much like the
two-dimensional reconstruction kernels of EWA splatting do
in the spatial domain. The algorithm presented in Section 4
finally renders these kernels to the screen.

3.1. The Continuous Spatio-Temporal Screen-Space
Signal

Within the EWA framework, scene objects are represented
by a continuous surface function f (u, t) which is defined
over a local surface parametrization u, also called the source
space. The projective mapping

m(u, t) : R2×R→ R2×R (2)

then maps this surface function from source space to screen
space. It is locally invertible for a fixed time instant t and as-
signs a surface point u to its corresponding screen position x.
Using this mapping the spatio-temporal screen-space signal
can be formulated as

g(x, t) = f (m−1(x, t), t) . (3)

The continuous surface function f (u, t) itself is repre-
sented by the set {Pk(t)} of time-dependent, irregularly
spaced point samples. Each point Pk(t) is associated with a
position uk(t) at time t and an ellipsoidal reconstruction ker-
nel rk(u−uk(t), t). The continuous surface function f (u, t)
at time t is reconstructed by the weighted sum

f (u, t) = ∑
k∈N

wk(t)rk(u−uk(t), t) , (4)

where wk(t) denotes the attribute value of the k-th point sam-
ple at time t.

We define the projective mapping m(u, t) individually for
each reconstruction kernel as mk(u, t) to simplify the follow-
ing derivations.

3.2. Time-Varying EWA Surface Splatting
We extend the EWA surface splatting framework by a time
dimension t and introduce a visibility function vk(x, t) which
defines the visibility of any surface point u(t) =m−1

k (x, t) in
the local parametrization plane of point sample Pk(t) at time
t from the camera viewpoint. By combining Equations 3

and 4 the spatio-temporal screen-space signal reformulates
to

g(x, t) = ∑
k∈N

wk(t)vk(x, t)r
′
k(x, t) , (5)

where r′k(x, t) = rk(m−1
k (x, t) − uk(t), t) represents a re-

construction kernel projected to screen space. Similar to
Zwicker et al. [ZPBG02], we bandlimit the spatio-temporal
screen-space signal with a spatio-temporal anti-aliasing filter
h(x, t):

g′(x, t) = g(x, t)∗h(x, t)

=
∫

T

∫
R2

g(ξ,τ)h(x−ξ, t− τ)dξdτ

= ∑
k∈N

wk(t)ρk(x, t) (6)

where the filtered resampling kernels ρk(x, t) are given as

ρk(x, t) =
∫

T

∫
R2

vk(ξ,τ)r
′
k(ξ,τ)h(x−ξ, t− τ)dξdτ . (7)

The visibility is dependent on the reconstruction kernels,
and ρk(x, t) can be evaluated as follows. In the first step, all
reconstruction kernels are filtered using h(x, t). The visibil-
ity is then determined based on the filtered reconstruction
kernels leading to the filtered resampling kernels.

3.3. Temporal Reconstruction

In analogy to a spatial reconstruction of f (u, t) we sample
the motion trajectories of Pk(t) in time and subsequently
build a reconstruction which is also continuous over time.
To achieve this we employ ellipsoidal 3D reconstruction
kernels Rktk (u) which define linearized trajectory patches
of the moving point samples, similarly to the 2D recon-
struction kernels that define linearized patches of the surface
in the original EWA splatting algorithm. These new recon-
struction kernels are centered at the point-sample positions
uktk = uk(tk) and are constructed by convolving the elliptical
2D Gaussian kernels rk(x, tk) with a 1D Gaussian along the
instantaneous velocity vector. The surface function is now
continuously reconstructed as follows:

f (u, t) = ∑
k∈N

∑
tk

wk(t)Rktk (u−uktk) . (8)

Combining this result with Equation 3 leads to the fol-
lowing equation for the continuous spatio-temporal screen-
space signal g(x, t):

g(x, t) = ∑
k∈N

∑
tk

wk(t)vktk (x, t)R
′
ktk (x) , (9)

where R′ktk (x) = Rktk (m
−1
k (x, tk)− uktk) are the reconstruc-

tion kernels projected to screen space. The time index tk
reflects that the sampling times are chosen adaptively for the
respective point-sample trajectories depending on the mo-
tion and shading changes over time, see Figure 2 for an illus-
tration. The actual sampling we used in our implementation
is described in Section 5.5.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Heinzle et al. / Motion Blur for EWA Surface Splatting

P(t)k

r (u,t)k

End Ellipse

Start Ellipse

Motion Trajectory

3D Gaussian Reconstruction Kernels Super-Sampling of 2D KernelsMotion of a 2D Reconstruction Kernel

R (u)k tk

Figure 2: A single 2D splat moving along its motion trajectory (left). Along the motion trajectory we place volumetric kernels
that comprise the spatial and temporal domain of the moving 2D splat (center). In comparison, an approach consisting of a
pure accumulation of temporal supersamples would require a high number of sampled 2D splats (right).

An explicit expression for the bandlimited spatio-
temporal screen-space signal of Equation 6 can then be
expressed as:

g′(x, t) = g(x, t)∗h(x, t)

= ∑
k∈N

∑
tk

wk(t)ρ̂ktk (x, t) , (10)

with the filtered resampling kernels ρ̂ktk (x, t):

ρ̂ktk (x, t) =
∫

T

∫
R2

vktk (ξ,τ)R
′
ktk (ξ,τ)h(x−ξ, tk− τ)dξdτ .

(11)

The resampling kernels ρ̂ktk (x, t) are again evaluated by
first filtering the reconstruction kernels and then determin-
ing the visibility based on the filtered reconstruction kernels.
We use the A-Buffer approach presented in Section 4.4 to
resolve the visiblity in practice: in a first step, the visibility
function is computed by determining which filtered recon-
struction kernels contribute to a single pixel. The visibility
is then used as temporal opacity contribution for each kernel
when evaluating the integral in Equation 1.

4. Rendering
This section briefly gives an overview of the rendering algo-
rithm before going into detail. First, the reconstruction fil-
ters R′ktk (x) are constructed in a similar way to EWA surface
splatting. The two axes a1,a2 span the plane of the original
2D surface splat and a third temporal axis a3 is constructed
based on the motion vector m. The latter is determined as
the difference vector between the start and end positions of
a point with respect to the time window of the temporal su-
persample and the temporal axis is constructed as a3 =

α

2 m,
where α controls the variance in the time domain.

The reconstruction filter is projected to screen space, sam-
pled at the pixel locations by rasterization and accumulated
to the current image. In contrast to Zwicker et al. [ZPBG02]
we do not use an affine approximation to map the filter to
screen space but integrate the filter in a perspectively correct
manner along the direction of the viewing ray [BSK04]. To
reduce the computational complexity we limit the extent of
the filter to a fixed cut-off value and can therefore also limit
the extent of the filter to a bounding polygon in screen space.

The correct visibility is computed using an A-Buffer ap-
proach to separate distinct portions of the surface, regarding
to the time interval the surface has been visible. After all
visible filter integration values have been accumulated the
result needs to be normalized since, in general, the EWA
filters do not form a partition of unity in space.

The following subsections will provide details on the con-
struction of the resampling filter, the integration of the re-
sampling filter along the viewing ray, the bounding volume
and the visibility A-Buffer.

4.1. The 3D Spatio-Temporal Reconstruction Filter

In analogy to EWA surface splatting we choose ellipsoidal
Gaussians G3

Q(x) as 3D reconstruction kernels Rktk (x) =
G3

Qktk
(x) and as low-pass filters. We define a 3D ellipsoidal

Gaussian G3
Q(x) with the 4x4 quadric matrix Q using homo-

geneous coordinates x = [x y z 1]T similar to [ZPBG02] as:

G3
Q(x) =

√
δ3|Q|

π3 e−δ xTQx , (12)

where the Gaussian is normalized to the unit volume in-
tegral. The scaling factor δ controls the variance of the
Gaussian. The quadric matrix Q can be decomposed into
Q = T−TT−1, where the 4x4 transformation matrix T is
constructed out of the three arbitrary, independent axis vec-
tors a1, a2, a3 spanning the Gaussian centered at point c:

T =

[
a1 a2 a3 −c
0 0 0 1

]
. (13)

From a geometric viewpoint the three axis vectors span a
skewed coordinate system, that is to say, the system of the
Gaussian filter, see Figure 3. A point in space is transformed
into the coordinate system of the Gaussian filter by T−1x
and the weight of the filter is evaluated based on the distance
of this point to the origin.

The correct screen-space bandlimiting filter is approxi-
mated by evaluating it in object space similar to [GBP06].
We first estimate the spacing of the pixel grid in object space.
If the length of the axes, projected onto this estimation, does

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Heinzle et al. / Motion Blur for EWA Surface Splatting

a
a

a

T-1

T e1

\subsection{Normalization}

e2

e3x
T-1x

Object Space Parameter Space

e

e

e1

2

3

3

2

1

Figure 3: We construct the 3D reconstruction kernels based
on the two original splat axes a1,a2 and the instantaneous
motion vector m. The matrix T is used to transform points
and lines from object space to the respective parameter
space. In parameter space an iso-level of the reconstruction
kernel can be interpreted as the unit sphere.

not match the filter width, we enlarge the axes to the size of
the filter radius.

The next section will show how to integrate a reconstruc-
tion filter along the viewing ray.

4.2. Sampling of the Reconstruction Filter

To evaluate the contribution of a single 3D Gaussian to a
pixel, the Gaussian is integrated along the path of the view-
ing ray within the integration time which equals the time
of exposure. The viewing ray for a pixel can be put in
parametrized form as r(s) = p+ s d, where p = [xw yw 0 1]T

denotes the pixel position in window coordinates and vector
d = [0 0 1 0]T represents the viewing direction of the ray. In
a first step the viewing ray is transformed into the parameter
system of the ellipsoid:

r̃(s) = (V ·P ·M ·T)−1r(s) = p̃+ s d̃ , (14)

where V, P and M denote the viewport, projection and mod-
elview matrix, respectively.

In a next step r̃(s) is transformed to the integration line
l(t). The integration line parametrizes the position on the ray
at integration time t. Let p̃′ = p̃xyz/p̃w and d̃′ = d̃xyz be the
dehomogenized vectors. The integration line is then defined
as

l(t) = b+ ft , (15)

with the transformed support point and direction

b = p̃′− p̃′z
d̃′z

d̃′, f =− d̃′

d̃′z
, (16)

where b is projected along r̃(s) to time z = 0 and f is the di-
rection from point a time z = 0 to the point at time z = 1. Re-
call that the z-axis in parameter space represents the tempo-
ral dimensionality. Figure 4 illustrates this conversion. The
integral along the 3D Gaussian visible in the time interval

u,v

w

a a

a w = t = -1

w = t = 1

w = t = 0
b

f

a

aa1 2

3

(VPMT)-1

VPMT

r(s)
r(s)~

Viewing ray r(s)
in world space

Integration line l(t)
in parameter space

l(t) = b + t f

ta

tb

1 2

3

Figure 4: To evaluate the line integral along the viewing ray
r(s) it is first transformed to the parameter space viewing
ray r̃(s) and finally normalized to the integration line l(t).
The integration line, again, is normalized to the time inter-
val [−1,1] which represents the total integration period. The
integral is evaluated in the time interval [ta, tb] in which the
kernel is visible.

[ta, tb] becomes∫ tb

ta
G3(l(t)dt =

∫ tb

ta
e−δ lT(t)l(t)dt

=
∫ tb

ta
e−δ (bTb+2bTf t+fTf t2) (17)

=
∫ tb

ta
e−δ lTxy(t)lxy(t)︸ ︷︷ ︸

Spatial

· e−δ t2︸ ︷︷ ︸
Temporal

dt ,

where the normalization of the Gaussian is performed im-
plicitly by the transformation from the viewing ray to the
integration ray. The solution for the finite integral is given as

∫ tb

ta
G3(l(t))dt =

√
πe−

δ(bTbfT f−(bT f)2)
fTf

2
√

δfTf
· (erf(f (tb))− erf(f (ta))) , (18)

where

f (x) =

√
δ

fTf

(
fTf · x+bTf

)
, erf(x) =

2√
π

∫ x

0
e−t2

dt .

(19)

The Gauss error function erf(x) cannot be computed analyt-
ically and will be stored as a look-up table for performance
reasons.

4.3. Bounding Volume Restriction
Theoretically the Gaussian reconstruction filters need to be
evaluated on the whole image plane. Nevertheless, the Gaus-
sian decays very fast and rays through pixel locations farther
than a certain cut-off distance from the projected kernel cen-
ter have negligible contributions to the image. To simplify
the computations for the visibility we therefore bound the
evaluation of the line integral by bounding the Gaussian filter
with a 3D tube.

The tube is defined as xTT−TDxyT−1x− 1 = 0 in object
space, where Dxy = diag(1,1,0,0) is a diagonal 4x4 matrix

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Heinzle et al. / Motion Blur for EWA Surface Splatting

and T is identical to the variance matrix of the ellipsoid in
Equation 13. Intersection points between a ray and the tube
are then determined by inserting Equation 14 into this rela-
tion and solving the quadratic equation

r(s)T(VPMT)−TDxy(VPMT)−1r(s) =

r̃xy(s)Tr̃xy(s) = 1 . (20)

In addition to the quadratic equation we bound the tube by
the two ellipses lying on the cut-off planes r̃z(s) = ±1 and
arrive at the bounding cylinder.

In the same way as the ellipsoid volume is constrained in
object space, its extent in screen space can be bounded by
the projection of the cylinder. The bounding box computa-
tion of the latter can be performed as described by Sigg et
al. [SWBG06]: First, the two axis-aligned bounding boxes
of the bounding ellipses are computed. Sigg et al. construct
a single, axis-aligned bounding box out of these two boxes
which leads to a non-optimal bounding box.

We propose to use the convex hull polygon instead. It can
be determined efficiently by comparing each of the four cor-
responding corner pairs separately. For each pair the follow-
ing simple relation holds: If one of the two vertices lies in
the inside quadrant the inside vertex is discarded. The inside
quadrant is defined by the two lines of the bounding box
adjacent to the vertex. In case the vertex is not in the inside
quadrant both vertices are connected. This simple algorithm
can be organized in a way that it yields a sorted list of points
defining the convex hull and can be directly used as an out-
put for a triangle strip by interleaving the vertex order. See
Figure 5 for an illustration.

4.4. Visibility

The visibility of a surface point is a discontinuous, non-
bandlimited function. The optimal strategy to solve the vis-
ibility problem for motion-blurred EWA surface splatting in
terms of visual quality is similar to the approach proposed
by [KB83]. As a result of the integration of all kernels along
the viewing rays, the time intervals in which each single
kernel is visible at a pixel are known. These integration in-
tervals [tn

a , t
n
b] are furthermore associated with a depth in-

terval [dn
a ,d

n
b], resembling the sorted lists of the A-Buffer

method [Car84].

Our adopted A-Buffer algorithm iterates over the intervals
starting with the earliest time interval. All subsequent time
intervals are compared for temporal and depth overlap using
a ternary depth test commonly used in EWA surface splat-
ting. In case both a temporal and depth overlap is detected,
the intervals belong to reconstruction kernels associated with
the same surface. Therefore, they are weighted and accu-
mulated to the current pixel value and finally normalized.
If there is only a temporal overlap present, the depth interval
of the later time interval is adjusted accordingly by removing
the occluded interval from it. After all intervals have been
processed, the visibility functions vk(x, t) of all reconstruc-
tion kernels contributing to the pixel are known. The final
pixel value is calculated based on Equation 1 by summing up

1

2

3

4 5

6

7

8 1,2

3,4 5,6

7,8

Outside quadrant cases Inside quadrant cases

I

IIIII

IV I IV

IIIII

Figure 5: Convex hull of two axis-aligned screen-space
bounding boxes. The algorithm compares the corresponding
four corners of the boxes in counter-clockwise order. If none
of the two corresponding corners lie within the inside quad-
rant of the other corner, both corners belong to the convex
hull (left). Otherwise the corner located in the inside quad-
rant is discarded (right).

all contributions weighted with the time-dependent shutter
function a(t).

The visibility algorithm as described above could be im-
plemented efficiently on a ray-tracer which naturally tra-
verses the objects in a roughly sorted depth order. Section 5
presents an approximative strategy to solve the visibility
problem on modern GPUs.

4.5. Discussion
This rendering framework is able to produce realistic motion
blur within the EWA surface splatting framework as shown
in Figures 8a and 9a. Our method determines the temporal
visibility of the ellipsoidal reconstruction kernels and is able
to render motion-blurred scenes using accurate surface con-
tributions dependent on their visibility.

Similar to our work, the method of [GM04] also con-
structs three-dimensional reconstruction kernels by convolv-
ing the two-dimensional object space ellipses with a low-
pass filter along the motion direction. In a subsequent step,
the reconstruction kernels are projected to screen space el-
lipses and used for rendering.

However, our framework and its rendering algorithm dif-
fer substantially from [GM04]. Their work combines a static
image of the scene combined with blurred motion hint el-
lipses. The static scene is generated using the original EWA
surface splatting algorithm, whereas the blurred motion hint
ellipses are rendered using a modified technique. Further-
more, their work neglects the temporal visibility and cannot
separate the spatial contributions of the motion ellipses and
consequently their opacity is not accurate. The results of this
limitation are the striping artifacts and disturbing overblend-
ing in areas with high overlap of motion ellipses. Therefore
it cannot reproduce photo-realistic motion blur as our ap-
proach.

5. GPU Implementation
The GPU implementation approximates the rendering
framework using multiple render passes:

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Heinzle et al. / Motion Blur for EWA Surface Splatting

Placeholder Teaser

Passes 1 & 2 Passes 3 & 4

Pass 5 Pass 6

Start / end
visibility

Kernel blending Normalization

t / t
computation

min max

Figure 6: The GPU implementation uses six passes to syn-
thesize motion-blurred images. The first two passes approx-
imate the visibility of the surface function at the start and
end of the exposure time (left). The subsequent passes three
and four approximate the visibility of the object in relation
to the background by computing the per-pixel time intervals
during which geometry is visible (middle left). After all re-
construction kernels have been blended (middle right), the
accumulated values are normalized and the rendered object
is composed with the background (right).

1. The first pass renders elliptical splats at the start time of
the integration period into the depth buffer only. The re-
sult is used as an approximation for the subsequent depth
tests.

2. The second pass renders elliptical splats at the end time
of the integration period, similar to step 1.

3. The third pass approximates the visibility against static
objects and the background by determining the earliest
instant of time in which geometry is visible for every
pixel.

4. The fourth pass determines the latest instant of time in
which geometry is visible for every pixel, similar to step
3.

5. The fifth pass blends all visible reconstruction kernels
into the accumulation buffer.

6. The sixth pass performs the normalization of the blended
kernels.

The following sections provide details on these steps.

5.1. Visibility Passes 1 and 2
The first two passes render the scene to the depth buffer
only by making use of elliptical discs as rendering prim-
itives. The first pass renders the scene at the start of the
integration period, whereas the second pass renders the same
scene transformed to the end of the integration period. Sim-
ilar to [BHZK05], the elliptical discs are rendered without
blending to determine the visible surface at a single time
instant for each pixel.

The resulting two depth buffers are then applied during
the subsequent steps to approximate the kernel visibilities.
The depth test works as follows. For every ellipsoid its min-
imum depth at the current fragment is determined and com-
pared to the corresponding entries of both depth buffers. If

the ellipsoid is visible in either one of the depth buffers the
processing is continued, otherwise the rest of the computa-
tions for this fragment can be discarded.

5.2. Background Visibility Passes 3 and 4
In a next step we approximate the solution for the visibility
problem with respect to the background or static objects by
estimating the total fraction of time in which any of the ker-
nels is contributing to a pixel. The fifth pass reuses the same
vertex and geometry shader as described here.

The vertex shader constructs the velocity vector based
on the transformation matrices of the start and end frame.
The normals of the 2D splats at the start and end frame are
computed to perform backface culling in case both normals
are facing away from the camera. In a following step the
screen-space bandlimiting filter is approximated by means
of ensuring that the projection of the axes equals at least the
size of the filter radius. Based on the outcome of the filter
the three axis vectors a1,a2,a3 are constructed. To avoid nu-
merical issues during the transformation of the viewing ray
we enforce a minimum length of the velocity axis a3 as well
as a minimum angle between the a1,a2 plane and a3. Then,
based on the axis vectors a1,a2,a3 and the kernel center c,
the transformation matrix (PMT)−1 is constructed. Similar
to [SWBG06] we compute the two axis-aligned bounding
boxes for the start and end frame ellipses. Instead of sim-
ply taking the combined axis-aligned bounding box, we send
both bounding boxes to the geometry shader to construct a
tighter bounding primitive.

The geometry shader combines the two axis-aligned
bounding boxes to a convex octagon with the method de-
scribed earlier in Section 4.3.

The fragment shader estimates the time intervals in which
the ellipsoids are visible. The idea is to determine the earliest
time instance tmin and the latest time instance tmax at which
any reconstruction kernel is covering the pixel. The view-
ing ray is first transformed from camera space to parameter
space and intersected with the cylinder. The z-component of
the intersection points can directly be used as the integration
interval [t′min, t

′
max] of a single kernel. The depth test ensures

that only the smaller or greater values, respectively, are writ-
ten to the depth buffer. At the end of the rendering cycle the
two depth buffers contain the earliest and the latest times per
pixel when any of the kernels becomes visible.

Pass 6 later uses [tmin, tmax] as an approximation of the
correct time intervals.

5.3. Blending Pass 5
In this pass the vertex and geometry program of the passes 3
and 4 are reused. The fragment shader transforms the view-
ing ray to the integration ray and performs the integration. To
evaluate exp(x) and erf(x) we utilize look-up tables which
are stored in textures. As an approximation, all visible re-
construction kernels are blended using the integration weight
of their whole integration period. To perform an accurate
visibility test partial occlusions during the kernel integration
period would have to be resolved as will be discussed later.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Heinzle et al. / Motion Blur for EWA Surface Splatting

(a)

(e) (f) (g) (h)

(b) (c) (d)

Figure 7: Comparison of the result images rendered with our GPU implementation (a-d) and images rendered with supersam-
pling of conventional EWA surface splatting framework (e-h), performance figures are given in Table 1. Figures (a,b): dragon
is rotating along the depth axis. Figures (b,f): colored knot rotating around the up and depth axis. Figures (c,g): fast rotating
face and igea heads, the heads moving along depth axes and overlap the face. Figures (d,h): book moving towards the camera.

5.4. Normalization Pass 6
In a final step the rendered image is normalized by the sum
of the kernel weights. The resulting image is combined with
the background where the blending weight is given by the
integral

∫ tmax
tmin

e−t2
dt reusing the time interval information ac-

quired in the fourth and fifth pass.

5.5. Sampling of the Motion Path
To support fast, non-linear movements we resample the mo-
tion path in the case of such movements. The motion path
is split into equidistant time frames and all 6 passes are
performed on the sampled sub-sets individually. The re-
sults of each iteration are accumulated into an accumula-
tion texture, and each sample is weighted using the inte-
gral

∫ tsubframei+1
tsubframei

e−t2
dt. Furthermore, a higher sampling of the

motion path helps to reduce visible artefacts due to the ap-
proximation of the visibility function. This approach allows
us therefore to trade rendering speed for correctness of the
result. Note that this is similar to super-sampling, however,
a much lower amount of samples is generally needed.

6. Results and Limitations
The GPU implementation is able to achieve high-quality pic-
tures at competitive frame rates compared to the pure tem-
poral supersampling approach. Figures 1 and 7 show some
sample renderings and comparisons. Table 1 lists the cor-
responding temporal supersampling rates and performance
figures for all examples in this paper. All results have been

computed on an NVIDIA GeForce 280 GPU. To fully expe-
rience the visual quality of our approach refer to the accom-
panying video.

The crucial benefit of our approach is that the volumet-
ric kernels adapt automatically to the speed of the motion.
In cases where an object moves at varying speeds a pure
temporal supersampling would usually sample the complete
animation at a constant rate nevertheless, whereas the volu-
metric kernels adapt implicitly.

As a limitation inter-object relationships cannot be han-
dled correctly on the GPU because the visibility cannot be
computed exactly, see Figure 8. The proposed approxima-
tion using the depth images is only able to exhibit a binary
visibility function based on the visibility of the ellipsoids in
the start and end frame. Additionally, artifacts may occur due
to the approximated backface culling where kernels may get
falsely discarded or accepted.

The visibility passes for determining tmin and tmax try
to approximate the total time during which any geometry
is visible at a fragment. This information is used to blend
the blurred image with the background. As only the earliest
and latest time instants are determined, problems arise if, for
example, geometry is only visible shortly at the beginning
and the end of the time interval, see Figure 9. However, our
approximation would classify the whole interval as being
covered by kernels.

While objects moving at similar speed are blended in a
plausible way, fast moving objects cannot be blended plau-
sibly with slow moving objects due to the above mentioned

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Heinzle et al. / Motion Blur for EWA Surface Splatting

Table 1: Performance comparisons for the depicted exam-
ples, measured using an NVIDIA GTX 280. The supersam-
pling factors ’x’ have been chosen for similar visual quality.

Figure 3D Kernels Super sampling Point
x Points/s x Points/s count

1.a 4 1.80M 30 1.44M 350k
1.b 2 4.63M 25 2.91M 466k
7.a/7.e 4 1.91M 30 1.78M 554k
7.b/7.f 12 0.42M 40 0.46M 303k
7.c/7.g 12 0.63M 80 0.65M 310k
7.d/7.h 1 1.65M 60 0.50M 825k

approximations. Although our framework has been designed
for generality, the visibility approximation limits the appli-
cability of the GPU algorithm to scenes where different ob-
jects do not exhibit simultaneous overlaps in time and depth
intervals. However, the artifacts which arise in this case can
be alleviated by increasing the temporal supersampling rate
along the motion trajectory which sacrifices rendering per-
formance in favor of quality.

7. Conclusion

In this paper we have introduced a new method for ren-
dering dynamic point-based geometry with motion blur ef-
fects based on EWA surface splatting. We have extended
the theoretical basis of the EWA framework in a conceptu-
ally elegant and consistent way and consequently provided a
mathematical representation of motion-blurred images with
point-sampled geometry. Our method replaces the 2D sur-
face splats of the original EWA surface splatting framework
by 3D kernels which unify a spatial and temporal com-
ponent. This allows for a continuous reconstruction of the
scene in space as well as time and the motion-blurred image
is computed as a weighted sum of warped and bandlimited
kernels. Accordingly, we have described an approximation
of the theoretical algorithm by means of a six-pass GPU
rendering algorithm. Our point rendering pipeline applies
ellipsoids with spatial and temporal dimensionality as new
rendering primitives and exploits vertex, geometry and frag-
ment program capability of current GPUs. Our framework
for point splatting maintains generality by avoiding any as-
sumptions or constraints on the nature of the captured scene
such as motion or lighting.

As for future work, the focus has to be put on a more accu-
rate handling of the visibility function. One of the possibili-
ties to address this issue would be an implementation which
exploits the GPU for general purpose programming. An-
other approach could compute the visibility function much
more accurately by using specialized hardware extensions to
current GPUs which support a reduced A-Buffer or by em-
ploying an extended dedicated hardware architecture such
as [WHA∗07]. As our current implementation uses a con-
stant number of samples per frame, the sampling could be
varied adaptively for each point based on its motion and
shading changes over time in a future work.

(a) (b)

(d)(c)

Figure 8: Inter-object relations can only be handled using a
higher sampling due to the visibility approximation on the
GPU. Figure (a) A-Buffer software implementation. GPU
implementation: (b) 1 sample, (c) 4 samples, (d) 8 samples.

A-Bu�er 1x 2x 12x

A-Bu�er 1x 2x 8x 8x 15x 30x

12x 20x 40x
3D kernels 2D supersampling

Figure 9: Left: 3D kernels rendered with the A-Buffer soft-
ware implementation and with different sampling rates for
the GPU implementation. Right: 2D kernel supersampling
with varying sampling rate. The visibility approximation for
the GPU produces artifacts when geometry has been visible
only shortly once at the beginning and once at the end of
the integration interval. As a solution, the number of tempo-
ral samples can be increased. The A-Buffer implementation
does not suffer from those artifacts.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Heinzle et al. / Motion Blur for EWA Surface Splatting

References
[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN

S., LEVIN D., SILVA C. T.: Point set surfaces. In IEEE Visual-
ization (2001), pp. 21–28. 2

[AKP∗05] ADAMS B., KEISER R., PAULY M., GUIBAS L.,
GROSS M., DUTRÉ P.: Efficient raytracing of deforming point-
sampled surfaces. Computer Graphics Forum 24, 3 (2005). 2

[BFMZ94] BISHOP G., FUCHS H., MCMILLAN L., ZAGIER E.
J. S.: Frameless rendering: double buffering considered harmful.
In SIGGRAPH (1994), ACM, pp. 175–176. 2

[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M.,
KOBBELT L.: High-quality surface splatting on today’s GPUs.
In Point-Based Graphics (2005), Eurographics, pp. 17–24. 2, 7

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.: Phong splat-
ting. In Point-Based Graphics (2004), Eurographics, pp. 25–32.
4

[Car84] CARPENTER L.: The A-buffer, an antialiased hidden sur-
face method. In SIGGRAPH (1984), ACM, pp. 103–108. 6

[Cat84] CATMULL E.: An analytic visible surface algorithm for
independent pixel processing. In SIGGRAPH (1984), ACM,
pp. 109–115. 2

[Coo86] COOK R. L.: Stochastic sampling in computer graphics.
In SIGGRAPH (1986), ACM, pp. 51–72. 2

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed
ray tracing. In SIGGRAPH (1984), ACM, pp. 137–145. 2

[CW93] CHEN S. E., WILLIAMS L.: View interpolation for im-
age synthesis. In SIGGRAPH (1993), ACM, pp. 279–288. 2

[ETH∗09] EGAN K., TSENG Y.-T., HOLZSCHUCH N., DURAND
F., RAMAMOORTHI R.: Frequency analysis and sheared re-
construction for rendering motion blur. ACM Transactions on
Graphics (SIGGRAPH) 28, 3 (2009), 1–13. 2

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.:
Splat/Mesh Blending, Perspective Rasterization and Trans-
parency for Point-Based Rendering. In Point-Based Graphics
(2006), Eurographics, pp. 49–58. 2, 4

[GD98] GROSSMAN J. P., DALLY W.: Point sample rendering.
In Rendering Techniques (1998), Springer, pp. 181–192. 2

[GG07] GUENNEBAUD G., GROSS M.: Algebraic point set
surfaces. ACM Transactions on Graphics (SIGGRAPH) 26, 3
(2007), 23:1–23:9. 2

[GGG08] GUENNEBAUD G., GERMANN M., GROSS M.: Dy-
namic sampling and rendering of algebraic point set surfaces.
Computer Graphics Forum 27, 2 (2008), 653–662. 2

[GM04] GUAN X., MUELLER K.: Point-based surface rendering
with motion blur. In Point-Based Graphics (2004), Eurographics.
2, 6

[GP07] GROSS M., PFISTER H.: Point-Based Graphics. Morgan
Kaufmann, 2007. 1

[Gra85] GRANT C. W.: Integrated analytic spatial and temporal
anti-aliasing for polyhedra in 4-space. In SIGGRAPH (1985),
ACM, pp. 79–84. 2

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer:
hardware support for high-quality rendering. In SIGGRAPH
(1990), ACM, pp. 309–318. 2

[Hec89] HECKBERT P.: Fundamentals of Texture Mapping and
Image Warping. Master’s thesis, University of California at
Berkeley, 1989. 2, 3

[HSA∗08] HEINZLE S., SAURER O., AXMANN S., BROWARNIK
D., SCHMIDT A., CARBOGNANI F., LUETHI P., FELBER N.,

GROSS M.: A transform, lighting and setup ASIC for surface
splatting. In International Symposium on Circuits and Systems
(2008), IEEE, pp. 2813–2816. 2

[KB83] KOREIN J., BADLER N.: Temporal anti-aliasing in
computer generated animation. In SIGGRAPH (1983), ACM,
pp. 377–388. 2, 6

[KB04] KOBBELT L., BOTSCH M.: A survey of point-based tech-
niques in computer graphics. Computers & Graphics 28 (2004),
801–814. 2

[LW85] LEVOY M., WHITTED T.: The Use of Points as Display
Primitives. Tech. Rep. 85-022, UNC Chapel Hill, 1985. 2

[Max90] MAX N.: Polygon-based post-process motion blur. The
Visual Computer 6 (1990), 308–314. 2

[ML85] MAX N. L., LERNER D. M.: A two-and-a-half-D
motion-blur algorithm. SIGGRAPH (1985), 85–93. 2

[MMS∗98] MUELLER K., MÖLLER T., SWAN J. E., CRAWFIS
R., SHAREEF N., YAGEL R.: Splatting errors and antialiasing.
IEEE TVCG 4, 2 (1998), 178–191. 2

[PC83] POTMESIL M., CHAKRAVARTY I.: Modeling motion blur
in computer-generated images. In SIGGRAPH (1983), ACM,
pp. 389–399. 2

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS
M.: Surfels: Surface elements as rendering primitives. In SIG-
GRAPH (2000), ACM, pp. 335–342. 2

[Ree83] REEVES W. T.: Particle systems – a technique for mod-
eling a class of fuzzy objects. In SIGGRAPH (1983), ACM,
pp. 359–376. 2

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object-space EWA
surface splatting: A hardware accelerated approach to high qual-
ity point rendering. In Computer Graphics Forum (2002), vol. 21,
pp. 461–470. 2

[Shi93] SHINYA M.: Spatial anti-aliasing for animation se-
quences with spatio-temporal filtering. In SIGGRAPH (1993),
ACM, pp. 289–296. 2

[SP04] SAINZ M., PAJAROLA R.: Point-based rendering tech-
niques. Computers & Graphics 28, 6 (2004), 869–879. 2

[SPW02] SUNG K., PEARCE A., WANG C.: Spatial-temporal
antialiasing. IEEE TVCG 8, 2 (2002), 144–153. 2

[SWBG06] SIGG C., WEYRICH T., BOTSCH M., GROSS M.:
GPU-based ray-casting of quadratic surfaces. In Point-Based
Graphics (2006), Eurographics, pp. 59–65. 6, 7

[WHA∗07] WEYRICH T., HEINZLE S., AILA T., FASNACHT D.,
OETIKER S., BOTSCH M., FLAIG C., MALL S., ROHRER K.,
FELBER N., KAESLIN H., GROSS M.: A hardware architec-
ture for surface splatting. ACM Transactions on Graphics (SIG-
GRAPH) 26, 3 (2007), 90:1–90:11. 2, 9

[WZ96] WLOKA M. M., ZELEZNIK R. C.: Interactive real-time
motion blur. The Visual Computer 12, 6 (1996), 283–295. 2

[ZP06] ZHANG Y., PAJAROLA R.: Single-pass point rendering
and transparent shading. In Point-Based Graphics (2006), Euro-
graphics, pp. 37–48. 2

[ZPBG02] ZWICKER M., PFISTER H., BAAR J. V., GROSS M.:
EWA splatting. IEEE TVCG 8, 3 (2002), 223–238. 1, 2, 3, 4

[ZRB∗04] ZWICKER M., RÄSÄNEN J., BOTSCH M., DACHS-
BACHER C., PAULY M.: Perspective accurate splatting. In
Graphics Interface (2004). 2

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

