
TensorFlow™ with LIBXSMM

Getting Started
The TensorFlow repository (as cloned below) is tracking the master revision of the original TensorFlow and it is
modified to use a recent revision of LIBXSMM (likely the master revision) as well as a recent revision of the Eigen
library (which may be an improved version). It is also possible to build this fork of TensorFlow without LIBXSMM
(see Performance Tuning and Profiling).
git clone https :// github .com/hfp/tensorflow -xsmm.git

LIBXSMM does not impose to build for a specific code path, and always exploits the most suitable instruction set
extension for JIT-enabled code paths. LIBXSMM may also use non-JIT code paths which are CPUID-dispatched (if
the static code path has lower capabilities). This however only works with GCC 5.1 (v4.9 is fine if the intended target
does not support AVX-512), Clang (not tested), or the Intel Compiler. It is hence recommended to use a recent GNU
Compiler Collection to build TensorFlow. If the static code path does not match the highest possible CPU target
(march=native), a very minor performance penalty (if at all) is expected (indirect calls due to CPUID-dispatch). If
this is unwanted or in case of compilation issues (e.g., due to outdated Binutils on OSX), one can disable the afore
mentioned facility by adding --copt=-DLIBXSMM_INTRINSICS_STATIC=1 to Bazel’s build line (see later). With any recent
Bazel version, a non-default compiler can be source’d i.e., it can be added to the environment just normally as shown
below (the second block of exports may be safely omitted).
export PATH =/ path/to/gcc/bin:${PATH}
export LD_LIBRARY_PATH =/ path/to/gcc/lib64 :/ path/to/gcc/lib:${ LD_LIBRARY_PATH }
export LIBRARY_PATH =/ path/to/gcc/lib64:${ LIBRARY_PATH }

export MANPATH =/ path/to/gcc/share/man:${ MANPATH }
export CXX =/ path/to/gcc/bin/g++
export CC=/ path/to/gcc/bin/gcc
export FC=/ path/to/gcc/bin/ gfortran

TensorFlow may be configured for the first time. In the past, Python 3 was problematic since it was not the
primary development vehicle (and Python 2.7 was a de-facto prerequisite). It is recommended to use the default
Python version available on the system (Linux distribution’s default). For the configuration, all questions may
be (interactively) answered with the suggested defaults. If not needed, some of the frameworks can be disabled
(TF_NEED_GCP=0, TF_NEED_HDFS=0, TF_NEED_S3=0, and TF_NEED_KAFKA=0).
cd /path/to/tensorflow -xsmm
git pull

TF_NEED_GCP =0 TF_NEED_HDFS =0 TF_NEED_S3 =0 TF_NEED_KAFKA =0 \
./ configure

Bazel is downloading dependencies by default during the initial build stage and hence Internet access on the build
system is highly desirable. When behind an HTTP-proxy, the environment variables https_proxy and http_proxy are
considered by the Python package installer (pip) but they should carry https:// and http:// respectively (in the past
pip --proxy was a necessary despite of the environment variables being present e.g., pip --proxy proxy.domain.com:912).
export https_proxy =https :// proxy. domain .com :912
export http_proxy =http :// proxy. domain .com :911

If the build step of any of the Bazel commands goes wrong, -s --verbose_failures can be used (-s shows the full
command of each of the build steps). For non-production code such as for debug purpose, TensorFlow can be built
with -c dbg (or at least --copt=-O0). For further reference, please consult the official guide to build TensorFlow from
sources. In case of production code, it is recommended the use a moderate optimization level (-c opt --copt=-O2), and
to better focus on a reasonable set of target-flags (-mfma -mavx2). LIBXSMM makes use of CPUID-dispatch, and it
is not too critical to pick for instance AVX-512 (even if AVX-512 is available on the intended production target).
However, if the desired workload is bottlenecked by Eigen code paths that are not covered by LIBXSMM, one may be
sufficiently served with Intel AVX2 instructions (-mfma -mavx2).
bazel build -c opt --copt=-O2 --linkopt =- pthread --cxxopt =- D_GLIBCXX_USE_CXX11_ABI =0 \

--copt=-fopenmp -simd --copt=- DLIBXSMM_OPENMP_SIMD \
--define tensorflow_xsmm =1 --define tensorflow_xsmm_convolutions =1 \
--define tensorflow_xsmm_backward_convolutions =1 \
--copt=-mfma --copt=-mavx2 \
// tensorflow /tools/ pip_package : build_pip_package

https://github.com/hfp/tensorflow-xsmm
https://github.com/tensorflow/tensorflow/
https://github.com/hfp/libxsmm
https://github.com/bazelbuild/bazel/releases
https://github.com/bazelbuild/bazel/releases
https://www.tensorflow.org/install/install_sources


If specific target flags are desired, one may select depending on the system capabilities:

• AVX2/HSW/BDW: --copt=-mfma --copt=-mavx2 (as shown above, and typically sufficient)
• AVX-512/CORE/SKX: --copt=-mfma --copt=-mavx512f --copt=-mavx512cd --copt=-mavx512bw --copt=-mavx512vl --copt=-mavx512dq

• AVX-512/MIC/KNL/KNM: --copt=-mfma --copt=-mavx512f --copt=-mavx512cd --copt=-mavx512pf --copt=-mavx512er

NOTE: TensorFlow or specifically Eigen’s packed math abstraction may assert an unmet condition in case of AVX-
512. Therefore, one should either (1) limit the code to Intel AVX2 instructions, or (2) supply -c opt which implies
--copt=-DNDEBUG and thereby disables the assertions (at own risk). As a side-note (this is often missed in AVX2
vs. AVX-512 comparisons), AVX2 code can utilize twice as many registers (32) on an AVX-512 capable system (if
instructions are EVEX encoded).

To finally build the TensorFlow (pip-)package ("wheel"), please invoke the following command (in the past the zip-stage
ran into problems with Python wheels containing debug code because of exceeding 2 GB for the size of the wheel).
bazel -bin/ tensorflow /tools/ pip_package / build_pip_package /tmp/ tensorflow_pkg

The new Python TensorFlow wheel can be installed by the following command (use sudo -H in front to elevate your
permissions, or add --user (this flag does not require a user name argument but implicitly specifies the current user)
to install locally for the current user rather than installing it in a system-wide fashion):
pip install -I /tmp/ tensorflow_pkg /<package -name -build -above.whl >

The -I flag may be sufficient to reinstall the wheel even when the name of the wheel suggests that the same version is
already installed. To make sure that no other bits are left, it is perhaps even better to remove all TensorFlow wheels
(system-wide and user-local). In rare cases it can help to start over and to remove all locally installed Python packages
(rm -rf ~/.local).
pip uninstall tensorflow
pip install /tmp/ tensorflow_pkg /<package -name -build -above.whl >

NOTE: Unless a workload is symlinked and built underneath of the TensorFlow directory (for quicker development
turnaround time; out of scope in this document), a wheel must be installed before it can be used to run any TensorFlow
Python-code (the desired workload).

Performance Tuning and Profiling
As suggested in the overview, it is possible to build the mentioned fork of TensorFlow without LIBXSMM ("vanilla
build"), or to try-out MKL-DNN as a compute engine. This may be desired to aim for performance, or to
draw a performance baseline respectively. To omit LIBXSMM, just omit the flags tensorflow_xsmm, eigen_xsmm,
and tensorflow_xsmm_backward (sometimes it may be desired to --define tensorflow_xsmm_backward=0 but to keep
--define tensorflow_xsmm=1 and --define eigen_xsmm=1). To utilize MKL-DNN, --config=mkl is supplied instead of
tensorflow_xsmm, eigen_xsmm, and tensorflow_xsmm_backward. To use MKL-DNN effectively, the environment shall be
setup with at least KMP_BLOCKTIME=1 (perhaps more environment settings such as KMP_AFFINITY=compact,1,granularity=fine,
KMP_HW_SUBSET=1T, and OMP_NUM_THREADS=<number-of-physical-cores-not-threads> are beneficial). The KMP_BLOCKTIME shall
be set to a "low number of Milliseconds" (if not zero) to allow OpenMP workers to quickly transition between MKL’s
and TF’s (Eigen) thread-pool. Please note that LIBXSMM uses the native TensorFlow (Eigen) thread-pool.

It can be very beneficial to scale TensorFlow even on a per-socket basis (in case of multi-socket systems). Generally,
this may involve (1) real MPI-based communication, or (2) just trivially running multiple instances of TensorFlow
separately (without tight communication). For example, Horovod can be used to perform an almost "trivial" instancing
of TensorFlow, and to add an intermittent averaging scheme for exchanging weights between independently learning
instances (Horovod is out of scope for this document). Similarly, for inference all incoming requests may be dispatched
(in batches) to independent instances of TensorFlow. For the latter, the TensorFlow Serving framework may be used
to serve for inference-requests with an easy to use web-based client/server infrastructure.

However, to quickly check the benefits of scaling TensorFlow, one may simply use numactl to run on a single socket
only; multiplying the achieved performance according to the number of sockets yields a quick estimate of scaling
performance. Here is an example for a single dual-socket Skylake server system with HT enabled and sub-NUMA
clustering disabled (2x24 cores, 96 threads in two memory-domains/sockets).
numactl -H

available : 2 nodes (0 -1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
node 0 size: 96972 MB

https://github.com/uber/horovod
tfserving.md


node 0 free: 91935 MB
node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 98304 MB
node 1 free: 95136 MB
node distances :
node 0 1

0: 10 21
1: 21 10

To run a workload on a single socket (of the afore mentioned system), one may execute the following command:
$ numactl -C 0 -23 ,48 -71 ./ my_tf_workload .py

It can be assumed that running on two sockets independently is twice as fast as the performance measured in the
previous step. For any benchmarks, a freshly booted system shall be used (alternatively, a root/sudo user can drop
filesystem caches and defragment memory pages):
echo 3 > /proc/sys/vm/ drop_caches
echo 1 > /proc/sys/vm/ compact_memory

To gain insight into performance bottlenecks, one can source the Intel VTune Amplifier and run:
amplxe -cl -r result -data -limit 0 \

-collect advanced - hotspots -knob collection - detail =stack - sampling -- \
./ my_tf_workload .py

To get nicely named JIT-kernels, LIBXSMM’s support for JIT-profiling can be leveraged. In case of TensorFlow, the
following flags can be added to Bazel’s build line (Intel VTune Amplifier 2018):
--copt=- DLIBXSMM_VTUNE =2 --linkopt =${ VTUNE_AMPLIFIER_2018_DIR }/ lib64/ libjitprofiling .a

For Intel VTune Amplifier 2017 this looks like:
--copt=- DLIBXSMM_VTUNE =2 --linkopt =${ VTUNE_AMPLIFIER_XE_2017_DIR }/ lib64/ libjitprofiling .a

Benchmarks
This document is a recipe for building and running TensorFlow with LIBXSMM. The amount of covered code paths as
well as the performance of these code paths are under development. Please do not expect any performance advantage
(at this point) when comparing to TensorFlow without LIBXSMM!

TensorFlow Model Repository

This section may help to quickly setup models from the TensorFlow repository. Care must be taken to ensure that the
model in question uses the NHWC-format, which is assumed by LIBXSMM. In most (if not all) cases this is not the
default, and the model must be adjusted.
git clone https :// github .com/ tensorflow / models .git tensorflow - models
cd /path/to/tensorflow -xsmm
ln -s /path/to/tensorflow - models tensorflow / models

bazel build <all -build -flags -used -to -build -the -wheel > // tensorflow / models / tutorials /image/ alexnet : alexnet_benchmark

The above command may be combined with //tensorflow/tools/pip_package:build_pip_package to build TF as well.
Please remember, the TF wheel needs to be only installed if the model runs outside of TF’s source tree. To run the
"Alexnet" benchmark:
LIBXSMM_VERBOSE =2 \
bazel -bin/ tensorflow / models / tutorials /image/ alexnet / alexnet_benchmark \

--batch_size =256 2>&1 \
| tee output_alexnet .log

Convnet Benchmarks

The section helps to quickly setup benchmarks for Alexnet, Overfeat, VGG, and Googlenet v1. Recently, the original
Convnet benchmark stopped working with current TensorFlow: please rely on TensorFlow model repository
(previous section).

libxsmm_prof.md


git clone https :// github .com/ soumith /convnet - benchmarks .git
cd /path/to/tensorflow -xsmm
mkdir -p tensorflow / models
ln -s /path/to/convnet - benchmarks / tensorflow tensorflow / models / convnetbenchmarks

bazel build <all -build -flags -used -to -build -the -wheel > \
// tensorflow / models / convnetbenchmarks : benchmark_alexnet \
// tensorflow / models / convnetbenchmarks : benchmark_overfeat \
// tensorflow / models / convnetbenchmarks : benchmark_vgg \
// tensorflow / models / convnetbenchmarks : benchmark_googlenet

The above command may be combined with //tensorflow/tools/pip_package:build_pip_package to build TF as well.
Please note, the wheel needs to be only installed if the model runs outside of TF’s source tree. To run the "Alexnet"
benchmark:
LIBXSMM_VERBOSE =2 \
bazel -bin/ tensorflow / models / convnetbenchmarks / benchmark_alexnet \

--data_format =NHWC --forward_only =true --batch_size =256 2>&1 \
| tee output_alexnet .log

Regression Tests
There are two aspects of LIBXSMM enabled within TensorFlow: (1) sparse CNN, and (2) CNN. To build and test the
sparse routines:
bazel build <all -build -flags -used -to -build -the -wheel > // tensorflow /core/ kernels : sparse_matmul_op_test

bazel -bin/ tensorflow /core/ kernels / sparse_matmul_op_test --benchmarks =all
bazel -bin/ tensorflow /core/ kernels / sparse_matmul_op_test

bazel run <all -build -flags -used -to -build -the -wheel > // tensorflow / python / kernel_tests : sparse_matmul_op_test

To build and test the regular CNN routines (note that below bazel run... may be deadlocking during the test):
bazel build <all -build -flags -used -to -build -the -wheel > // tensorflow /core/ kernels : conv_ops_test
bazel -bin/ tensorflow /core/ kernels / conv_ops_test

bazel run <all -build -flags -used -to -build -the -wheel > // tensorflow / python / kernel_tests : conv_ops_test

Running Inception-v3 inference on the ImageNet dataset
Please follow the instructions at the following link to download and preprocess the Inception-v3 dataset: The relevant
part of the instructions are duplicated below for convenience.
# location of where to place the ImageNet data
DATA_DIR =$HOME/imagenet -data

# build the preprocessing script .
cd tensorflow - models / inception
bazel build // inception : download_and_preprocess_imagenet

# run it
bazel -bin/ inception / download_and_preprocess_imagenet "${ DATA_DIR }"

The final line of the output script should read something like this, note the number of images:
2016 -02 -17 14:30:17.287989: Finished writing all 1281167 images in data set.

Please download models/slim from this link. Please download the pretrained weights for Inception-v3 from here.
Please setup the environment variables as follows:
export CHECKPOINT_FILE = location of downloaded inception -v3 pretrained weights
export DATASET_DIR = $DATA_DIR

Please modify the file eval_image_classifier.py in models/slim so that inter_op_parallelism_threads is set to 1 since
TensorFlow/libxsmm does not support concurrent evaluations of subgraphs currently.
slim. evaluation . evaluate_once (

master =FLAGS.master ,
checkpoint_path = checkpoint_path ,
logdir =FLAGS.eval_dir ,

https://github.com/tensorflow/models/blob/master/inception/README.md#getting-started
https://github.com/tensorflow/models/tree/master/slim
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz


num_evals = num_batches ,
eval_op =list( names_to_updates . values ()),
variables_to_restore = variables_to_restore ,
session_config = tf. ConfigProto ( inter_op_parallelism_threads =1))

Run inference on ImageNet as follows:
python eval_image_classifier .py \

--alsologtostderr \
--checkpoint_path =${ CHECKPOINT_FILE } \
--dataset_dir =${ DATASET_DIR } \
--dataset_name = imagenet \
-- dataset_split_name = validation \
--model_name = inception_v3

Please verify recall and accuracy as follows:
2017 -07 -13 21:21:27.438050: I tensorflow /core/ kernels / logging_ops .cc :79] eval/ Recall_5 [0.93945813]
2017 -07 -13 21:21:27.438104: I tensorflow /core/ kernels / logging_ops .cc :79] eval/ Accuracy [0.77981138]
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