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Figure 1: (Left) We train a network to encode/decode BTF texels using 77 materials from the Bonn BTF database [WGK14]. (Center) Each

texel’s appearance is projected into a shared, 32-dimensional encoding space. (Right) We show renderings for an unseen material from each

of the 7 classes in the database (bottom row of the database), rendered directly from the latent projection.

Abstract

Realistic rendering using discrete reflectance measurements is challenging, because arbitrary directions on the light and view

hemispheres are queried at render time, incurring large memory requirements and the need for interpolation. This explains the

desire for compact and continuously parametrized models akin to analytic BRDFs; however, fitting BRDF parameters to complex

data such as BTF texels can prove challenging, as models tend to describe restricted function spaces that cannot encompass

real-world behavior. Recent advances in this area have increasingly relied on neural representations that are trained to reproduce

acquired reflectance data. The associated training process is extremely costly and must typically be repeated for each material.

Inspired by autoencoders, we propose a unified network architecture that is trained on a variety of materials, and which projects

reflectance measurements to a shared latent parameter space. Similarly to SVBRDF fitting, real-world materials are represented

by parameter maps, and the decoder network is analog to the analytic BRDF expression (also parametrized on light and view

directions for practical rendering application). With this approach, encoding and decoding materials becomes a simple matter of

evaluating the network. We train and validate on BTF datasets of the University of Bonn, but there are no prerequisites on either

the number of angular reflectance samples, or the sample positions. Additionally, we show that the latent space is well-behaved

and can be sampled from, for applications such as mipmapping and texture synthesis.

CCS Concepts

• Computer Graphics → Rendering; • Material Appearance → BTFs & Neural Models;
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1. Introduction

One of the main goals in Computer Graphics is to create photore-
alistic renderings that appear plausible to the human eye. Beyond
scene geometry, a lot of the visual plausibility comes from the re-
alism of the rendered materials. While many analytic reflectance
models can create realistic-looking materials, this is only one part
of the challenge. The bigger part of the difficulty lies in matching
the appearance of existing, real-world materials.

To tackle this issue, many research efforts have been focused on
building devices that can take measurements of a given material’s
appearance. Typically, this means capturing calibrated photographs
of a material sample at a number of different combinations of view-
ing and lighting direction (see [DvGNK99]). Rendering from such
a discrete set of textures is quite impractical as it integrates subopti-
mally with the rest of the pipeline: at rendering time, we want to be
able to query the appearance at an arbitrary view-light configuration,
which has to be interpolated from the discrete set of measurements.

The obvious solution to this is to transform the discrete list of
reflectance measurements at each point into a continuous repre-
sentation that is practical for rendering. Analytic spatially-varying
bidirectional reflectance distribution functions (SVBRDFs) are the
most common choice of models for this purpose, and the straightfor-
ward approach would be to fit the parameters of an SVBRDF model
given the measurements; however, this does not generalize well to
measurements of many real-world materials. Most BRDF models
make strong assumptions about the function they represent, such as
Helmholtz reciprocity, energy conservation etc.; furthermore, they
assume that the shape of the reflectance lobes can be approximated
accurately with the analytic expression of the BRDF (often based
on Gaussians).

In practice, most real-world materials are far from perfectly de-
fined and isolated, which changes the reflectance response drasti-
cally. They contain many imperfections (dust, scratches, fuzziness
etc.) which humans are perceptive of and which contribute to a more
realistic appearance. For many spatially varying materials, the mea-
surements at single positions also contain traces of light transport
from nearby points (such as subsurface scattering, interreflections,
shadowing etc.). Therefore we follow the convention of Koudelka et
al. [KBMK01] and refer to the texel responses as A(pparent)BRDFs
or reflectance functions. To reconstruct these ABRDFs accurately,
we need more expressive models that make fewer assumptions about
the data.

One possible approach to tackle this issue is to learn not only the
set of parameters, but also the reflectance model (see [RJGW19]).
Using a neural architecture similar to an auto-encoder, reflectance
functions are projected to a parameter vector in latent space. The
decoder (analog to the BRDF model) is learned during training,
along with the projection into latent space. Effectively, this means
that no assumptions on the reflectance model are made. One of the
main shortcomings of this approach however, is that it does not
generalize well across materials. A different instance of the network
is trained for every new material BTF, meaning that the parameter
space is not shared between materials.

Ideally, we desire an infrastructure that is common to all materials,
a way of encoding them all to the same space. This would make the

neural reflectance models truly analog to analytic parametric BRDFs.
In this paper, we present our new unified architecture that is trained
on a wide range of BTF texels and projects them all to a common
latent space, and investigate the flexibility, stability and robustness of
such encoding. Furthermore, we demonstrate the practical advantage
of such a unified architecture for efficient encoding of ABRDFs of
a new, previously unseen, material.

2. Related Work

Bidirectional Texture Functions (BTFs) were first introduced by
Dana et al. [DvGNK99]. Intuitively, they are organized as a stack
of 2-dimensional textures, where each texture corresponds to the
material’s appearance under a certain combination of viewing and
lighting directions. Relinquishing spatial information, one can look
at individual texel responses as reflectance measurements of a single
point on the material. In that sense, individual texel responses are a
list of reflectance values at different angles on a particular position
on the material defining its appearance function. Although consid-
ered individually, in the case of BTFs, these local responses still
contain non-local lighting effects such as subsurface scattering or
interreflection.

Fitting parametric models Researchers have often employed fit-
ting of a parametric or analytic model to explain real-world re-
flectance data. Here, early work in the context of BTFs used poly-
nomials [MGW01] and Lafortune lobes [MLH02] to model the
directional dependence of each texel. Later approaches model direc-
tional variation as mixtures of parameteric models [WDR11,SPS13].
As a side effect, parametric methods often provide physically mean-
ingful and potentially user-editable quantities characterizing the
geometry (e.g. surface normals), surface albedo, etc. [LBAD∗06,
MG09, AWL13]. Related to our process of learning a decoder, Ge-
netic Programming (GP) has previously been employed to learn
new analytic BRDF models that better describe specific materi-
als [BLPW14]. Many recent works have proposed employing
deep learning to efficiently fit a parametric BRDF model instead of
employing traditional non-linear optimization [AAL16, LDPT17,
LSC18, LXR∗18, DAD∗18, MHRK19, BL19, KXH∗19]. Many of
these methods are derived from U-Net or auto-encoder architec-
tures [KCW∗18, GLD∗19].

Standard neural architectures usually have fixed numbers of in-
puts (in the non-convolutional dimensions), so recent developments
have witnessed the use of size- and order-independent aggregation
mechanisms, used for instance in the Generative Query Networks
(GQNs) of [EJRB∗18]. Deschaintres et al. [DAD∗19] use a max-
pooling operator to allow their SVBRDF estimation process to ac-
commodate an arbitrary number of input photos of a material. Kim
et al. [KGT∗17] on the other hand use moment-pooling to obtain
the same independence.

Unfortunately, analytic BRDF models are generally not suffi-
ciently expressive to capture the rich variety of local reflectance
behavior observed in real-world materials, which leads to significant
residuals compared to the original data. Accordingly, the residual of
the fit is often kept and compressed separately [MCT∗05, WDR11].
Parametric methods also make additional assumptions about the data
and the materials: fitting methods generally require close-to-perfect
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registration of the BTF data, parallax correction, as well as a clearly
defined opaque material surface. Some or all of these assumptions
may be violated when acquiring materials that do not do not occupy
a clearly defined two-dimensional surface.

Latent spaces of appearance Researchers have also investigated
finding a common parameter space for real-world measurements
of appearance. Soler et al. [SSN18] have proposed a non-linear
manifold using a Gaussian-process latent-variable model that is suit-
able for interpolation over the space of measured materials (MERL
database). Sun et al. [SJR18] have proposed a data-driven diffuse-
specular separation which enables efficient material editing opera-
tions on the separated diffuse and specular components of measured
BRDFs and a novel low-dimensional PCA model for measured
BRDFs with similar dimensionality as analytic models. Lagunas et
al. [LMS∗19] instead learn a perceptual feature space for materials
(based on data gathered from crowdsourced experiments) that corre-
lates with perceived appearance similarity. In the context of their
BTF compression scheme, Havran et al. [HFM10] extract common
intrinsic data between materials, but in general there has been little
work on finding a shared projection basis for BTFs.

Neural encoding of appearance Several recent works have ap-
plied neural networks to encode material representations or light
transport in scenes ([RDL∗15]). A comprehensive survey about
deep appearance modelling can be found in [Don19]. Maximov et
al. [MRF18] introduced the concept of “deep appearance maps”,
which use a small fully connected network as a material descriptor.
Zsolnai-Fehér et al. [ZFWW18] employ a neural network to render
previews of materials with static scene geometry. Also related to this
is neural texture rendering [TZN19], which features texture maps
along with a neural renderer that allows to store much more informa-
tion than diffuse textures, such as specular highlights and parallax.
Kuznetsov et al. [KHX∗19] use Generative Adversarial Networks to
avoid explicit modeling and simulation of the surface microstructure,
achieving a more flexible representation of specularity.

Closest to our work is that of Rainer et al. [RJGW19] who first pro-
posed neural encoding of BTFs. However, they employ a material-
specific autoencoder architecture that, while very good at encoding
and interpolation of a specific material, does not generalize to other
BTFs. This means that the entire network has to be expensively
re-trained for encoding a different material BTF. The lack of a com-
mon parameter space for encoding ABRDFs also means that their
method cannot support applications such as appearance synthesis or
interpolation in latent space. Instead, we present a unified BTF en-
coding architecture that makes such latent space operations possible,
while also making it very efficient to encode a previously unseen
material without requiring any re-training.

3. Problem Analysis

BTFs are spatially-varying reflectance maps, meaning they also
contain information about the spatial layout of ABRDFs. To keep
input complexity low, we choose to ignore the spatial disposition
and process each texel individually, without making use of the neigh-
boring information. This means we encode each Apparent BRDF
separately. The difficulty lies in the fact that ABRDFs describe a

larger space of possible appearances than BRDFs. Since during the
acquisition of the BTF, the point captured in the ABRDF is sur-
rounded by the rest of the material, under directional lighting, the
measurements contain a lot of non-local lighting effects, such as
subsurface scattering and interreflections. Having these effects in
the measurements allows for a more realistic rendering in the end,
but it also makes individual treatment of texels more complex. This
is one of the reasons why standard BRDFs, which by design model
light transport in a single isolated point only, are not an optimal
choice to approximate ABRDFs.

Another difficulty comes from the sample spacing of the mea-
surements. ABRDFs are in practice a list of reflectance values with
the corresponding light and view directions, for one position on
the material. Depending on the acquisition protocol, the number
of entries in that list, as well as the light/view directions that were
sampled, is variable. Since we want to design an approach to encode
any set of BTF measurements, no assumptions on angular resolution
and sampling pattern can be made. The only prerequisite we impose
on the input data, is that the hemispheres of lighting and viewing
be sampled fairly uniformly and at a sufficient resolution to cor-
rectly sample most reflectance lobes. Fortunately, BTFs are usually
sampled regularly in the angular domain, as there is little utility
in adaptive sampling patterns for materials with spatial variations:
a sampling strategy that is optimal for some set of points on the
surface will be suboptimal for other points.

Since we want to learn the space of reflectance functions, beyond
a mere mapping of ABRDFs to parameters, we model the entire
process using neural networks. We refer the reader to [GBC16]
for explanations of the deep learning concepts used in the fol-
lowing sections. Conceptually, our approach is close to an auto-
encoder ([HS06]): The input measurements are encoded to a vector
in parameter space, which, when run through the decoding model,
should approximate as well as possible the input values. In that
sense, the decoding network is analog to a BRDF model, with the
difference that the decoding function is learned rather than analyti-
cally fixed.

Neural networks are known to yield excellent performance for a
range of challenging problems when the input data is arranged on a
regular grid (e.g. a 2D image), and the network architecture relies
on convolutional layers that effectively constitute a type of regu-
larization strategy. When processing ABRDFs, such an approach
is unfortunately not possible, since their angular positions are ir-
regular. The number of angular samples may even change from
one ABRDF to another, which means that another standard neural
network element—the fully-connected layer—is also not admissible.
To handle the unstructured angular nature of the data, we introduce
a new architecture that is invariant to both the number of angular
measurements as well as their exact positions and ordering.

4. Method

In this section, we delve into the specificity of our neural encoding
and decoding method. An input is an ABRDF, which we format as
a list of n 7-dimensional entries: incoming light direction (2 dimen-
sions), outgoing light direction (2 dimensions), and respective RGB
reflectance measurement (3 dimensions). Our encoding structure
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Figure 2: Our architecture is conceptually an autoencoder for BTF texels, that works for any angular sampling resolution and pattern. It

encodes input ABRDFs of arbitrary ordering and length n to a low-dimensional latent vector. Using an MLP that predicts weights from angles,

we build a weights matrix that the expanded RGB measurements are multiplied with. Averaging across the vertical dimension allows us to

recover a 3-by-m feature matrix for any input, satisfying the BTF sampling invariance criterion. Intuitively this is equivalent to discrete

angular integration of the product of reflectance signal with angular filters. The remainder of our encoding architecture consists of standard

fully-connected networks with ReLU activations.

(Figure 2) projects the input to a latent vector of small, fixed dimen-
sionality. The decoding structure (Figure 3) is able to reconstruct the
input ABRDF given the corresponding latent vector. Similarly to an
auto-encoder, the full encoding-decoding pipeline is optimized to
best approximate an identity transformation (at the angles sampled
in the input).

Neural Architecture Since we cannot make any assumptions about
the input structure (in angular space), a flexible encoding pipeline
is required. To satisfy this, we split the encoding network into two
parts. In a first processing phase, a Multi-Layer Perceptron (MLP)
outputs basis vectors of fixed dimensionality at each sampled angu-
lar position, which the reflectance measurements are projected on.
Integration along the angular dimension reduces this to a fixed-size
feature vector. In essence, this is a discrete approximation of an
integration (in angular space) of the product of the reflectance lobes
with learned filters.

The aim of this integration in the angular domain is to detect in-
herent properties of the reflectance functions through their responses
to the filters. For instance, in the case where the filter learned by
the MLP were to be constant, the recovered response would be the
mean reflectance, which is a good approximation of diffuse albedo.

Another possibly more intuitive way of looking at our encoding

approach is as an approximation of a linear layer. The most straight-
forward architecture would be a fully connected layer between the
input list of RGB measurements and the latent vector. However, this
is not possible because the ordering and number of angles in the
input ABRDF can change between datasets. So instead, we use an
MLP (parametrized on the light/view angles) to predict the weights
that this fully connected layer would apply. Essentially, the MLP
learns a continuous representation of the intended fully connected
layer, in the angular domain.

Angular MLP The MLP takes the angles (in stereographic
parametrization, similarly to [RJGW19]) of one light-view com-
bination as input and returns a vector of weights. When processing
a set of angular reflectance measurements, the angular MLP is run
at every sampled light-view position, and we concatenate all m-
dimensional output vectors into a weight matrix A. On the other
side, the list of RGB reflectance values is expanded m times. Mul-
tiplying the resulting weight matrix elementwise with the list of
reflectance values is then equivalent to a basic dot product of the
angular filters with the reflectance signals.

Encoder Network The flexibility of our encoding architecture lies
in the order- and resolution-invariant integration along the vertical
dimension in Figure 2. While MaxPooling also satisfies the invari-
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ance requirements, we determined empirically that an averaging
operation produces better results. This allows us to squash the di-
mension of n elements to one, which means that independently of
the ordering and the number of angular samples, the result of this
operation is always a 3-by-m matrix. The output of this processing
step is a feature vector of fixed dimensionality, that we use as input
to the more traditional encoder.

Consistently with the aim of the angular MLP to simulate a
linear layer, we first apply a non-linear activation (parametric ReLU
(Rectified Linear Unit) & addition of bias) on the unrolled 3m-
dimensional feature vector. The remaining part of the the encoder is
composed of standard fully connected layers with ReLU activations.
In practice, the fully connected part of the encoder only contains
one hidden layer before projection to the latent space.

Comparison of our encoder with Rainer et al. Rainer et
al.’s [RJGW19] encoder performs 1-dimensional convolutions and
downsampling (max pooling) over the ordered list of reflectance
values, followed by fully connected layers with ReLUs. Because of
this 1-dimensional treatment of data parameterized on 4 dimensions
(incoming and outgoing directions), the learned mapping to the la-
tent space has limited complexity. The reason for this convolutional
downsampling is that the input ABRDFs are extremely large (almost
80,000 values), so directly using fully connected layers is impracti-
cal. Furthermore, a fully connected layer would require fixing the
angular sampling of the ABRDFs, which works for Rainer et al. who
train a new network per material. In our case, the angular sampling
can change between datasets, so we want to remain flexible. To
achieve this, our encoder learns a continuous representation of these
fully connected weights based on the respective light/view angles
with a small MLP (50,000 parameters), which allows us to create an
approximate version of this fully connected layer at any given input
size.

Decoder Network The decoder (Figure 3) is also a fully connected
network with non-linear activations, following the same decoder
design as Rainer et al [RJGW19]. It takes as input the latent coor-
dinates of the ABRDF, along with the light and view directions in
stereographic coordinates, which makes it practical for rendering.
In practice, we use 4 hidden layers with ReLU activations.
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vector

3

Figure 3: Our decoder architecture is identical to [RJGW19].

Training Specifications The entire architecture is trained end to
end. To cheaply augment the data and to avoid overexposing the
network to certain hues, we permute the RGB channels of input

ABRDFs at every iteration. Furthermore, to make the network more
robust to variations in the angular resolutions, the decoder receives
a random subset of between 20% and 100% of the samples during
training. The loss is still computed on the full set of angular samples,
though. This ensures that even with a lower angular resolution, the
projection still converges to the same position in latent space, and
that the decoder interpolates smoothly between sampled angles.

We train on BTF texels from the Bonn BTF database [WGK14],
which contains 7 material classes, each featuring 12 material BTF.
We train and test on the texels of 11 out of 12 BTFs of each class.
The 12th material of each class is kept for validation and used for
evaluation in the next section.

To keep training stable, the reflectance values in the ABRDFs are
normalized in preprocessing, i.e., the mean gets subtracted and the
resulting values are divided by their standard deviation. Additionally,
to reduce the high dynamic range of measurements, a logarithmic
transformation is applied to the values before the normalisation.

Once training is completed, compressing the appearance of a BTF
texel simply becomes a matter of evaluating the network given the
corresponding list of measurements as input. For rendering, only the
projected latent maps and the decoder layers are required.

Implementation Details In our implementation, the angular MLP
consists of 4 hidden layers, each with 128 neurons plus ReLU
activations, and m = 800. The MLP hence outputs 3 vectors of
800 weights for each angular configuration of light/view, that are
multiplied elementwise with each RGB reflectance measurement
(expanded 800 times). The encoder only consists of a PreLU acti-
vation, one hidden layer with 128 neurons and a ReLU activation.
The decoder consists of 4 hidden linear layers of 106 neurons with
ReLU activations (same architecture as [RJGW19]). Whilst those
parameters remain fixed, we explore several possibilities of latent
space dimensionality in the following section.

We train with standard stochastic gradient descent, learning rate
of 0.2, batch size of 10, 100 ABRDFs per dataset per epoch. At
every epoch, we load a new random set of 100 ABRDFs from
each material BTF. We train for 1000 epochs, which takes about
40 hours on average on an NVIDIA GeForce RTX 2070. We found
empirically that using an L1 loss gives our encoding a more accurate
average hue and preserves more contrast than the L2 loss used by
Rainer et al.

5. Results

To assess the performance of our network, we visualize reconstruc-
tion results on the 7 datasets used for validation (unseen at train-
ing/testing time). We compare to the architecture from [RJGW19],
which we consequently refer to as custom network, as Rainer et al.
train a new instance of the network for every material. In contrast,
we refer to our architecture as general network as it is trained on
many different BTF datasets and evaluated on unseen materials.

5.1. Accuracy

When dealing with BTFs, it is difficult to compare with ground truth,
because as soon as rendering is performed, the original textures are
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(commonly linearly) interpolated, which introduces bias. The only
available method is comparing reconstructions with the original
textures at the angles that were sampled in the ABRDF. Figure 4 dis-
plays the texture reconstructions of each of the validation materials
at one particular combination of light/view directions.

Comparisons in texture space In Figure 4, we compare the
ground truth with the custom network of [RJGW19] trained on all
Bonn training materials, except the validation materials displayed
in the figure, to the custom network overfitted to the individual ma-
terial, and to our network trained on all training materials. This is a
skewed comparison in the sense that the networks of columns 2 and
5 are evaluated on unseen materials, while the network of column 3
was trained solely on the evaluated material.

Furthermore, we use the same latent space dimensionality and
decoder size for all networks. This means they all dispose of the
same compression and decoding budget, allowing us to assess how
well each architecture is able to learn a more general embedding. As
the custom network in column 3 is overfitted to the specific material,
it represents the upper performance bound that a general architecture
could reach.

On average, the custom network overfitted to the specific material
performs slightly better than our network. However, this is to be
expected as the custom network uses all its encoding budget to cater
to the specific appearance of the material, while our network adopts
an average solution that works well for all classes of materials.
In that sense, our network performs almost as well on an unseen
material as the custom network on an overfitted material, given the
same parameter budget.

Overall, the main drawbacks of the encoding are firstly a loss of
spatial detail (the reconstructions are slightly blurrier than the origi-
nal). This is most likely due to slight misalignment or parallax in the
original data, which means that individual positions on the material
still move around in texture space, making the information harder
to encode when we process ABRDFs individually. The other issue
seems to be a damping of specular highlights for some materials
(e.g., Fabric12). The most likely explanation for this is that specular
highlights only show in a small subset of captured angles, making
this part of the signal less crucial to the reconstruction loss. Diffuse
albedo, anisotropy, intershadowing, etc., play a much bigger role in
the loss than localized specular highlights.

Influence of the number of latent dimensions In order to tackle
these loss-of-detail issues, we investigate the influence of latent
space dimensionality, i.e., how much storage budget is given to the
network to encode each ABRDF. More latent dimensions means
more specific reflectance details can be encoded on each direction
(anisotropy, specularity etc.) and the network is given more parame-
ters to separate similar-looking texels.

Rainer et al. set a standard for a reasonable reconstruction perfor-
mance. When overfitting the projection to a specific dataset, 8 latent
dimensions are a good compromise between maximizing reconstruc-
tion accuracy and minimizing storage. We attempt to find the best
compromise between a small network and similar performance.

Table 1 shows the average reconstruction error on the unseen
datasets for our network at varying latent sizes. We compare our

wood12 wallpaper12 stone12 leather12 felt12 carpet12 fabric12
[RJGW19](8) 2.0 1.5 3.7 26 2.5 4.1 1.5

Ours (8) 5.1 2.7 6.0 110 3.7 5.0 8.2
Ours (16) 4.5 1.9 4.9 101 2.7 3.3 6.7
Ours (32) 4.0 1.5 3.7 90 2.0 2.4 4.5
Ours (64) 4.1 1.5 3.7 98 1.8 2.2 4.0
Ours (128) 4.5 1.4 3.7 96 1.8 2.2 4.3

Table 1: Mean Square Reconstruction error (×104) for networks

with varying latent size. Datasets unseen by our network during

training.

performance with that of Rainer et al.’s network. It is to be noted
that we train our network on L1 loss on the logtransformed and
whitened texels, while Rainer et al. train with an L2 loss on the
texels preprocessed in the same way. From Table 1, we choose
a latent size of 32 dimensions as the best compromise between
accuracy and compression. The improvement gained by going to
higher latent dimensions is marginal, and the network seems to have
more difficulties generalizing for materials such as wood12, possibly
overfitting to the training data. At 32 latent dimensions, our network
achieves a reconstruction error lower or equal to the custom network
on 4 out of 7 datasets. The latent maps are 4 times the size of Rainer
et al.’s, but the decoder network is shared between all materials, so
does not require extra storage per material.

Regarding the size of the decoder, Rainer et al. showed that 4
hidden layers represent the sweet spot in depth. We experimented
with wider layers (more neurons), which also decreases the recon-
struction error, but in a far less drastic measure than increasing the
latent size. Additionally, it makes the network heavier and slower
to train, as well as much slower to run for rendering applications.
For this reason, we consider a latent size of 32 with the original
layer width of 106 neurons to be the most efficient compromise for
maximized performance at reasonable compression: this amounts to
storing roughly 10 RGB textures for one encoded BTF material.

Comparisons on renderings When rendering with the original
dataset, the ground truth renderings are inevitably corrupted by
linear interpolation between nearest sampled directions (usually 9
light/view combinations). Many very localized specular details can
get lost or blurred out in the process. Hence, some additional recon-
struction accuracy can be gained with networks that interpolate well
in between the original sampled views, even if at the originally sam-
pled positions (as in Figure 4) the reconstruction is not perfect. The
stability of the neural interpolation was demonstrated in [RJGW19]:
with superior interpolation capabilities, even if the reconstruction
performance at originally sampled directions is not perfect, we still
obtain a near-equal quality performance on renderings.

In Figure 5, we compare renderings with the custom overfitted
network and with two instances of our architecture, to renderings
with the original BTF. Both full BTF and neural rendering use the
same rendering code as [RJGW19]. For reference, renderings of
the BTF-mapped cylinders in Mitsuba, at 800× 800 pixels, at 32
samples per pixel, parallelized on 10 processes, pathtraced with par-
allax mapping of the height field associated to the material, take 1.2
minutes on our machine for our general network with 32 latent di-
mensions, versus 1.1 minutes with the custom network of [RJGW19]
at 8 latent dimensions.
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Figure 4: Comparison of the reconstruction using different architectures (at equal latent space and decoder size) with the original texture

from BTF datasets kept for validation. Except for the custom network [RJGW19] overfitted specifically to the respective dataset, the other

networks have not seen the data at training time. View/light azimuth and elevation angles of the shown textures: 0◦, 45◦, 90◦, 30◦.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

173



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Unified Neural Encoding of BTFs

Figure 5: Renderings, from left to right: full BTF, [RJGW19] net-

work (overfitted to the material), our network (unseen material) with

latent size 8 and 32.

In the third column we use our architecture with 8 latent dimen-
sions and decoder layers of 106 neurons (same budget as [RJGW19]).
In the fourth column, we show our model of choice, with 32 latent
dimensions this time. The increase in encoding budget greatly im-
proves the reconstruction, even though all the materials displayed
are unseen by our network at training times (reserved for validation).
This means our codec generalizes well outside of the training set.

It is apparent that our network performs very well at encoding
spatial detail (most noticeable on the leather12 dataset), better than
the custom overfitted network. Non-local effects like subsurface
scattering and intershadowing are particularly well replicated by our
architecture. However, for materials with sharp specular lobes (see

wood12 and fabric12), some of the specular highlights are damped.
In this area, the custom network remains slightly more faithful, albeit
applying more spatial blur. This is most likely due to the custom
decoder learning a specific reflectance shape that is characteristic
to the overfitted material’s texels. Our network however, has to
learn an average reflectance shape across many materials with very
varied appearance. Specular highlights proportionally only play a
small role as the appearance of most materials in the database is
dominated by other properties (diffuse albedo, intershadowing, etc.).
For visualization of temporal coherence, we provide animations
of a BTF-textured plane under a moving point light source in the
supplemental material, comparing the original BTF rendering to the
custom network and our general network.

Evaluation on a different data source For additional compar-
isons, we process the first ten datasets of the UTIA MAM
database [FKH∗18] with our network (trained and tested solely
on the Bonn datasets). The UTIA BTFs, too, are uniformly sam-
pled, but are less dense, containing 6,561 angular measurements
compared to 22,801 for Bonn. However the materials are generally
more specular and some of them contain transparent layers. To our
knowledge, there is no heightfield parallax correction. Figure 6 show
point-light renderings of the first ten materials of the UTIA MAM
database, rendered using the original BTF, the custom network of
Rainer et al. [RJGW19] overfitted to the respective material, and our
network’s predicted latent maps. The most notable difference is that
our network tends to dim the specular highlights that are truncated
in the original dataset, because it has not seen any examples of those
in the training data, whereas the overfitting network [RJGW19] can
learn those. Overall, we observe the expected slight degradation
compared to Rainer et al., but beyond that, our network generalizes
plausibly to a new, unseen, data source.

5.2. Stability of the latent space

Robustness to angular resolution We show that our novel archi-
tecture can accommodate any structure of input sampling. To enforce
this flexibility, at training time, we randomly feed between 20% and
100% of the angular inputs to the angular MLP and encoder. For
reference, the 6,561 angular measurements of the UTIA datasets
amount to approximately 28% of the angular resolution of the Bonn
datasets. The loss is still computed at all originally measured angular
combinations, to make sure the model learns correct interpolation.
Using the validation datasets, we show the convergence of the re-
construction loss as a function of the size of the angular subset in
Figure 7. From less than 10% of angular samples on (2,280 ran-
domly chosen out of the original 22,801), the reconstruction is stable
and has converged.

Figure 8 shows the same comparison on reconstructed textures.
Each texture was rendered using a latent map that was projected from
a random subset (of the respective proportion) of angular samples.
Visually and quantitatively, the reconstructed appearance converges
at less than 10% of the original samples. Since the network only
needs a tenth of measurements of the Bonn datasets for similar re-
construction quality, this would allow capture times of these datasets
to be reduced tenfold. Even datasets with a low-resolution angular
sampling will benefit from this encoding that creates an appearance
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Figure 6: Point-lit renderings of BTF datasets from [FKH∗18]. From left to right: materials 1 to 10. Top to bottom: Original BTF, [RJGW19]

(overfitted), our reconstruction (unseen material).

Figure 7: Mean and standard deviation of the reconstruction loss

as a function of percentage of angular samples, computed over a

random selection of pre-processed ABRDFs for each validation

material.

model that interpolates smoothly and behaves well using the knowl-
edge it gained from the densely sampled training materials, which
will produce better renderings than interpolating a sparsely sampled
set of angles.

Filtering in latent space An important technique to facilitate ren-
dering at different scales is spatial downfiltering of textures, com-
monly applied as mipmapping. Texture pyramids are typically pre-
computed before rendering, to allow texture lookups at different
resolutions depending on the footprint of the material in the render-
ing. We investigate the equivalence between downsampling in latent
space before renderings, versus downsampling in reconstructed tex-
ture space in Figure 9. The difference is barely noticeable, filtering
in latent space proves to be very stable. Furthermore, this saves
computation time as it allows precomputation of latent mipmaps
and avoids having to run the decoder multiple times.

Texture synthesis using the most compressed representation Fi-
nally, a stable latent space allows for efficient BTF synthesis. Tex-
ture synthesis on BTFs is challenging because BTFs are basically
N-dimensional RGB textures, N being the number of angular mea-
surements. Using our encoding, we can directly synthesize from the
latent maps instead (32-dimensional). We use straightforward image
quilting ([EF01]) on the latent maps in Figure 10 to enlarge the BTF
by a factor of 5.

Visualization of the latent space We use a t-distributed Stochas-
tic Neighbor Embedding (t-SNE) to visualize the behavior of the
latent projection (see Figure 1). We observe that within a BTF, the
projections of texels are very well clustered. There is however not an
obvious consistency with the semantic classes defined in the Bonn
database. Nevertheless, this is to be expected as our clustering is
relative to appearance, while the semantic classes refer rather to fab-
ric/material types and fabrication procedures. For instance, some of
the carpet ABRDFs are very close in diffuse albedo and reflectance
shape to those from felt materials, even though they are in different
semantic classes.

6. Conclusion

We presented a novel architecture model capable of handling unstruc-
tured angular reflectance measurements. Based on autoencoders,
our network projects ABRDFs into a low-dimensional latent space,
analogous to analytic BRDF model parameters, while the decoder
network is analogous to the analytic BRDF model expression. The
network is trained on a variety of ABRDF samples from the Bonn
BTF datasets, and evaluated on previously unseen materials. Com-
pared to Rainer et al. who train a new network instance for every
new material [RJGW19], encoding a new material with our method
requires a simple evaluation of the encoder. Having a single autoen-
coder instance also means that the latent space is shared between
materials, i.e., texels are projected into the same domain. This allows
for exploration of the parameter space for applications such as latent
mipmapping, texture synthesis etc.
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Figure 8: From left to right: Reconstruction using our network (latent size 32) at 1, 5, 10, 20, 50 and 100% of angular samples, with average

reconstruction error. Rightmost column: Ground truth. Angles (view azimuth, elevation, light azimuth, elevation): 0◦, 45◦, 0◦, 90◦.

Future Work One of the main obstacles hindering more generaliza-
tion seems to be the lack of data. The Bonn database is the biggest
available BTF database, but it is still relatively sparse compared to
standard deep learning problems. Only 77 materials are shown to
the network, and the validation datasets we evaluate on do not all
have close matches in the training set. One way of tackling this issue
would be to augment the training data with synthetic ABRDFs. This
is a tricky endeavor, however, as most synthetic SVBRDF datasets

are generated using common analytic BRDF models. This could
bias the network into learning current analytic models, which con-
flicts with our goal of staying flexible to learn all the components of
real-world reflectance functions.
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Figure 10: Renderings with textures synthesized in latent space.

Bottom corners: Ground truth BTF texture.
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M., H. R.: Evaluating Physical and Rendered Material Appearance. The

Visual Computer (Computer Graphics International 2018) (2018). 8, 9

[GBC16] GOODFELLOW I., BENGIO Y., COURVILLE A.: Deep Learning.
MIT Press, 2016. www.deeplearningbook.org. 3

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

177



G. Rainer & W. Jakob & A. Ghosh & T. Weyrich / Unified Neural Encoding of BTFs

[GLD∗19] GAO D., LI X., DONG Y., PEERS P., XU K., TONG X.:
Deep inverse rendering for high-resolution svbrdf estimation from an
arbitrary number of images. ACM Trans. Graph. 38, 4 (July 2019).
URL: https://doi.org/10.1145/3306346.3323042, doi:
10.1145/3306346.3323042. 2

[HFM10] HAVRAN V., FILIP J., MYSZKOWSKI K.: Bidirectional texture
function compression based on multi-level vector quantization. Com-

puter Graphics Forum 29, 1 (2010), 175–190. doi:10.1111/j.

1467-8659.2009.01585.x. 3

[HS06] HINTON G., SALAKHUTDINOV R.: Reducing the dimensionality
of data with neural networks. Science (N.Y.) 313 (08 2006), 504–7.
doi:10.1126/science.1127647. 3

[KBMK01] KOUDELKA M. L., BELHUMEUR P. N., MAGDA S., KRIEG-
MAN D. J.: Image-based modeling and rendering of surfaces with arbi-
trary BRDFs. In Proc. IEEE Conf. Comp. Vision & Pat. Rec. (CVPR) (Dec.
2001), pp. I–568–I–575. doi:10.1109/CVPR.2001.990524. 2

[KCW∗18] KANG K., CHEN Z., WANG J., ZHOU K., WU H.: Efficient
reflectance capture using an autoencoder. ACM Trans. Graph. 37, 4 (July
2018). URL: https://doi.org/10.1145/3197517.3201279,
doi:10.1145/3197517.3201279. 2

[KGT∗17] KIM K., GU J., TYREE S., MOLCHANOV P., NIESSNER M.,
KAUTZ J.: A lightweight approach for on-the-fly reflectance estimation.
2017 IEEE International Conference on Computer Vision (ICCV) (2017),
20–28. 2

[KHX∗19] KUZNETSOV A., HAŠAN M., XU Z., YAN L.-Q., WAL-
TER B., KHADEMI KALANTARI N., MARSCHNER S., RAMAMOOR-
THI R.: Learning generative models for rendering specular microge-
ometry. ACM Transactions on Graphics 38 (11 2019), 1–14. doi:

10.1145/3355089.3356525. 3

[KXH∗19] KANG K., XIE C., HE C., YI M., GU M., CHEN Z., ZHOU

K., WU H.: Learning efficient illumination multiplexing for joint cap-
ture of reflectance and shape. ACM Trans. Graph. 38, 6 (Nov. 2019),
165:1–165:12. URL: http://doi.acm.org/10.1145/3355089.
3356492, doi:10.1145/3355089.3356492. 2

[LBAD∗06] LAWRENCE J., BEN-ARTZI A., DECORO C., MATUSIK W.,
PFISTER H., RAMAMOORTHI R., RUSINKIEWICZ S.: Inverse shade
trees for non-parametric material representation and editing. In ACM

SIGGRAPH 2006 Papers (New York, NY, USA, 2006), SIGGRAPH
’06, ACM, pp. 735–745. URL: http://doi.acm.org/10.1145/
1179352.1141949, doi:10.1145/1179352.1141949. 2

[LDPT17] LI X., DONG Y., PEERS P., TONG X.: Modeling surface
appearance from a single photograph using self-augmented convolutional
neural networks. ACM Trans. on Graphics (Proc. SIGGRAPH) 36, 4 (July
2017), 45:1–45:11. doi:10.1145/3072959.3073641. 2

[LMS∗19] LAGUNAS M., MALPICA S., SERRANO A., GARCES E.,
GUTIERREZ D., MASIA B.: A similarity measure for material appearance.
ACM Trans. Graph. 38, 4 (July 2019), 135:1–135:12. URL: http://
doi.acm.org/10.1145/3306346.3323036, doi:10.1145/
3306346.3323036. 3

[LSC18] LI Z., SUNKAVALLI K., CHANDRAKER M. K.: Materials
for masses: SVBRDF acquisition with a single mobile phone image.
Proc. Eur. Conf. Comp. Vision (ECCV) (2018). 2

[LXR∗18] LI Z., XU Z., RAMAMOORTHI R., SUNKAVALLI K., CHAN-
DRAKER M.: Learning to reconstruct shape and spatially-varying re-
flectance from a single image. In SIGGRAPH Asia 2018 Technical Papers

(2018), ACM, p. 269. 2

[MCT∗05] MA W.-C., CHAO S.-H., TSENG Y.-T., CHUANG Y.-Y.,
CHANG C.-F., CHEN B.-Y., OUHYOUNG M.: Level-of-detail repre-
sentation of bidirectional texture functions for real-time rendering. In

Proceedings of the 2005 Symposium on Interactive 3D Graphics and

Games (New York, NY, USA, 2005), I3D ’05, ACM, pp. 187–194.
doi:10.1145/1053427.1053458. 2

[MG09] MENZEL N., GUTHE M.: g-BRDFs: an intuitive and editable
BTF representation. Computer Graphics Forum (2009). doi:10.1111/
j.1467-8659.2009.01432.x. 2

[MGW01] MALZBENDER T., GELB D., WOLTERS H.: Polynomial
texture maps. Proc. SIGGRAPH (2001), 519–528. doi:10.1145/

383259.383320. 2

[MHRK19] MERZBACH S., HERMANN M., RUMP M., KLEIN R.:
Learned fitting of spatially varying BRDFs. Computer Graphics

Forum 38, 4 (2019), 193–205. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.13782, arXiv:https:

//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.

13782, doi:10.1111/cgf.13782. 2

[MLH02] MCALLISTER D. K., LASTRA A., HEIDRICH W.: Efficient
rendering of spatial bi-directional reflectance distribution functions. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference

on Graphics Hardware (Aire-la-Ville, Switzerland, Switzerland, 2002),
HWWS ’02, Eurographics Association, pp. 79–88. 2

[MRF18] MAXIMOV M., RITSCHEL T., FRITZ M.: Deep appearance
maps, 2018. arXiv:1804.00863. 3

[RDL∗15] REN P., DONG Y., LIN S., TONG X., GUO B.: Image based
relighting using neural networks. ACM Tr. Graph. (Proc. SIGGRAPH)

34, 4 (July 2015), 111:1–111:12. doi:10.1145/2766899. 3

[RJGW19] RAINER G., JAKOB W., GHOSH A., WEYRICH T.: Neural
BTF compression and interpolation. Computer Graphics Forum (Proc. Eu-

rographics) 38, 2 (2019), 1–10. 2, 3, 4, 5, 6, 7, 8, 9

[SJR18] SUN T., JENSEN H. W., RAMAMOORTHI R.: Connect-
ing measured BRDFs to analytic BRDFs by data-driven diffuse-
specular separation. ACM Trans. Graph. 37, 6 (Dec. 2018), 273:1–
273:15. URL: http://doi.acm.org/10.1145/3272127.

3275026, doi:10.1145/3272127.3275026. 3

[SPS13] SILVA N., PAULO SANTOS L.: Interactive high fidelity visualiza-
tion of complex materials on the GPU. Computer & Graphics, Technical

Section 37, 7 (Nov. 2013), 809–819. doi:10.1016/j.cag.2013.
06.006. 2

[SSN18] SOLER C., SUBR K., NOWROUZEZAHRAI D.: A
versatile parameterization for measured material manifolds.
Computer Graphics Forum 37, 2 (2018), 135–144. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/

cgf.13348, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1111/cgf.13348, doi:10.1111/cgf.13348.
3

[TZN19] THIES J., ZOLLHÖFER M., NIESSNER M.: Deferred neural
rendering: Image synthesis using neural textures. ACM Transactions on

Graphics 2019 (TOG) (2019). 3

[WDR11] WU H., DORSEY J., RUSHMEIER H.: A sparse para-
metric mixture model for BTF compression, editing and rendering.
Computer Graphics Forum 30 (2011), 465–473. URL: http://
dx.doi.org/10.1111/j.1467-8659.2011.01890.x, doi:

10.1111/j.1467-8659.2011.01890.x. 2

[WGK14] WEINMANN M., GALL J., KLEIN R.: Material classification
based on training data synthesized using a BTF database. Proc. Eur. Conf.

Comp. Vision (ECCV) (2014), 156–171. 1, 5

[ZFWW18] ZSOLNAI-FEHÉR K., WONKA P., WIMMER M.: Gaussian
material synthesis. ACM Trans. on Graphics (Proc. SIGGRAPH) 37, 4
(July 2018), 76:1–76:14. doi:10.1145/3197517.3201307. 3

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

178


