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Abstract

In the BEAMING project we have been extending the scope of col-
laborative mixed reality to include the representation of users in
multiple modalities, including augmented reality, situated displays
and robots. A single user (a visitor) uses a high-end virtual real-
ity system (the transporter) to be virtually teleported to a real re-
mote location (the destination). The visitor may be tracked in sev-
eral ways including emotion and motion capture. We reconstruct
the destination and the people within it (the locals). In achieving
this scenario, BEAMING has integrated many heterogeneous sys-
tems. In this paper, we describe the design and key implementa-
tion choices in the Beaming Scene Service (BSS), which allows the
various processes to coordinate their behaviour. The core of the
system is a light-weight shared object repository that allows loose
coupling between processes with very different requirements (e.g.
embedded control systems through to mobile apps). The system
was also extended to support the notion of presence awareness. We
demonstrate two complex applications built with the BSS.
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1 Introduction

Telepresence is the experience involved in the displacement of a
remote operator’s perception into a virtual environment, or the illu-
sion of being in a real environment other than true location. This
means of shifting perception is achieved using various technologies
that need to perform joint execution of tasks simultaneously. The
availability of low-cost sensors, tracking technologies and robotic
devices for achieving telepresence has increased in recent years.
Providing interoperability allows these heterogeneous systems from
multiple vendors to readily work together and exchange data.

The BEAMING (Being in Augmented Multimodal Naturally Net-
worked Gatherings; www.beaming-eu.org) project aims to trans-
port people (visitors) from one physical place in the world to a des-
tination to enable interaction with local people and objects there
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[Steed et al. 2012]. This is achieved by capturing the visitor’s ac-
tions, physiological and emotional state using a transporter to cap-
ture data that is transmitted across the Internet to the destination.
Simultaneously, the destination is captured and streamed to the vis-
itor’s location (transporter) as a reconstructed virtual environment
in real time (Figure 1). A transporter is a high-end virtual reality
(VR) system that is used to capture the visitor’s actions and display
the remote space while the destination is a real space populated
with local people and a robot or VR display. Thus, the actions and
state of the visitor at the destination site is visualised by the lo-
cal people as a physical robot and/or avatar on a VR display. The
project combines technologies from networking, computer vision,
computer graphics, virtual reality, audio, haptics, robotics and user
interface together.

We aim to give a sense of spatial presence within the destination
for visitors, hence the visual display at the transporter must be an
immersive display [Steptoe et al. 2012; Normand et al. 2012] such
as a head-mounted display (HMD) or a immersive projection sys-
tem (e.g. CAVE displays [Cruz-Neira et al. 1992]). As it strives
for social symmetry, the system must provide similar sensory ex-
periences, particularly the dominant visual mode, to the visitor. To
fully capture a visitor, we use multiple devices such as motion cap-
ture suit, hand tracker and EEG (Figures 1a and b). Visitor tracking
is not limited to the body posture and motions but includes measur-
ing neuro-physiological signals and mapping emotions onto remote
avatars and robots.

We aim to give a sense of copresence to the locals so visitors are
represented with a virtual or physical embodiment at the destina-
tion. Locals need no visual mediation to perceive the destination as
being realistic and spatial because they perceive the actual physi-
cal location. However, stimuli representing the destination must be
captured and transmitted in real time to the transporter. These can
include static room models [Pece et al. 2013], point cloud scans
[Pece et al. 2011] or audio [Olesen et al. ]. Physical embodiments
can be in the form of robots [Buss et al. 2009] or mobile telep-
resence systems [Tsui et al. 2011] while virtual embodiments are
presented on displays at the destination such as desktop monitors,
projections and spherical displays [Oyekoya et al. 2012], as de-
picted in Figure 1d.

Data exchange and communication between the visitor transporter
and the destination is a critical aspect in the project. Treatment of
all these data is not a trivial matter since different kinds of data need
to be captured, streamed from the transporter and reproduced at the
destination synchronously. The complexity is characterised by the
diversity of devices and software interfaces which includes varia-
tions in networking, input and display capabilities. The complexity
of data communication technologies behind networked games and
virtual environments has been explored extensively in [Steed and
Oliveira 2009].

To address this problem, this paper presents the design and imple-
mentation of the Beaming Scene Service (BSS), which provided in-
teroperability for heterogeneous systems in the BEAMING project.
The system extends previous work by integrating the concept of
presence awareness in mixed reality applications. We also present
the deployment of the proposed architecture to support mixed real-
ity systems in two application scenarios. We focus on data trans-



(a) Body (b) Hand, EEG (c) BEAMING recreates a real environment (the destination) populated with people (locals)
while a remote person (visitor) visits the the recreated model via a transporter.

(d) Displays and
Robot

Figure 1: High level data flow of the BSS between the transporter and destination sites.

fer, session management, data representation and client applications
supported in the project.

2 Related Work

Several research efforts have been done on surveying middle-
ware systems for various usage such as robotics [Mohamed et al.
2009], sensor networks [Henricksen and Robinson 2006; Molla and
Ahamed 2006; Wang et al. 2008] and mobile computing [Gaddah
and Kunz 2003]. Papagiannakis et al. [Papagiannakis et al. 2008]
provide a survey of network technologies for mobile augmented re-
ality systems. Mixed reality systems are a subset of middleware
systems focussing on real-time synchronous communication across
a range of devices. Mixed-reality systems include 2D or 3D models
of space and tend to focus on visual elements of the scene.

One common abstraction for mixed-reality and distributed multi-
media systems is an abstract data service such as a tuple-space
[Davies et al. 1997; Gelernter 1985; Wyckoff et al. 1998]. This is
manifest in the EQUIP system [Greenhalgh et al. 2001; Greenhalgh
2002], which was developed to support the merging of physical and
virtual environments as part of the Equator project. A number of in-
put and output modules were created within the EQUIP framework,
which included publishing input from various devices, such as GPS
receiver, tilt sensor, mouse/keyboard, PC joystick, 2D GUI input
simulator (e.g. to simulate a joystick on a handheld device), RF-ID
tag reader and video-based light tracking. The system also inter-
faced to the MASSIVE-3 collaborative virtual environment [Green-
halgh et al. 2000]. The system incorporated type definition modules
for renderable objects, audio and video session descriptions. 3D
rendering objects included simple solid geometries, abstract data
visualisations, embedded views of MASSIVE-3 worlds, and geo-
referenced objects and positions (e.g. globally located using GPS).
With an abstract data service approach there is a tension between
flexibility of representation and the speed of updates. Specifically
when dealing with mixed-reality systems, if we have descriptions
of scenes as geometry, point clouds or video, these representations
are likely to be too bulky to store in the tuple-space and are specific
to only some of the collaborating processes.

Tracking is an important part of any Virtual or Augmented Reality
(AR) application. Multimodal interaction requires multiple track-
ing systems to fully capture and replicate a visitor’s actions at a
destination. Reitmayr and Schmalstieg [Reitmayr and Schmalstieg
2005] presented the OpenTracker framework to deal with the prob-
lem of integrating tracking data from various devices for AR sys-

tems. The authors presented an implementation where the data type
processed is a fixed structure tailored towards specific application
and hope to extend it to different data structures in future work. Our
system is not just concerned with tracking data but also the man-
agement of high-bandwidth reconstruction data. However, we deal
with similar issues identified in the design requirements such as de-
vice abstraction, support for complex configurations and simplicity
of integration.

Chao and Wang presented a framework for exchanging Computer
Aided Drawing/Manufacturing data between heterogeneous sys-
tems [Chao and Wang 2001]. The framework focussed on the
provision of data exchange mechanisms that would support collab-
orative design and manufacturing at geographically dispersed sites.
The framework utilised a client-server architecture where clients
request for product data (AutoCAD files) while the server searches
for and translates the data into a standard format. The framework
supported data browsing, data search, multi-database connections,
automatic format recognition and translation. The work highlighted
the importance of standardisation for the exchange of product data.
Adopting a standard format is crucial for interoperability, as we
highlighted in our work. Managing interoperability among het-
erogeneous systems has also been explored in smart home envi-
ronments [Perumal et al. 2008]. Smart spaces can potentially be
extended with avatar (through Augmented Reality, AR on smart-
phones) and robotic embodiments. Mobile devices such as robots
and smartphones add a mobility feature that can sense the world
around it and map the space. As such, they are prone to intermittent
network connectivity, which can have an effect on the availability.
Thus, we proposed managing the availability with the concept of
presence awareness, as discussed below.

Most of the systems we identified tended to share location and event
data but do not address the issue of presence awareness manage-
ment. The concept of presence indication is seen in instant messag-
ing applications where users’ availability is displayed to friends e.g.
“available”, “unavailable”, “busy”, “away”, “do not disturb”, etc.
The use of presence indicators for monitoring a visitor or robot’s
availability opens up a range of presence applications. Boyer et al.
[Boyer et al. 1998] investigated tools to allow a distributed team
to work better based on presence awareness of each other. Boyer
et al. identified presence cues that can be tracked in determining
presence status such as computer and telephony activities. In our
paper, we apply this concept to handheld mobile devices. Recent
advances have seen an increase in the use of mobile handheld de-
vices with wireless networking capabilities. Client mobility and
intermittent connectivity are inherent with such devices, as noted



by Kulkarni et al. [Kulkarni et al. 2003]. Mobile clients can move
from one location to another and as such are prone to frequent dis-
connections and reconnections. Disconnections can occur due to
poor network coverage at a particular location or due to the mo-
bile device powering down to save energy. In the Equip system,
Greenhalgh et al [Greenhalgh et al. 2001] reported that they handle
intermittently connected wireless devices through a proxy service
to send an receive EQUIP data items. They developed an additional
lightweight ASCII protocol to communicate between the proxy and
low resource devices as these devices were incapable of handling
numerous events at a reasonable rate. We use XMPP (Extensible
Messaging and Presence Protocol)1 to deal with this issue, as well
as awareness management, which is lacking in related works. For
example, we handle intermittent connections by using ‘unavailable’
or ‘sleep’ mode to inform the service that the mobile client has not
been disconnected.

3 Requirements

A key step towards software and hardware integration in BEAM-
ING is the data communication and exchange between processes.
One of the requirements is the interfacing of heterogeneous sys-
tems i.e. sensors on Linux, iOS, Windows, OSX, etc. Interfaces
range from external services (e.g. Second Life) to specific hardware
(e.g. robots and handheld mobile devices). Based on discussions
amongst project developers, we identified several requirements:

Heterogeneity: This is a key requirement, as capture processes and
rendering processes may have different operating systems and pro-
gramming languages.

Scalability: There may be several visitors, avatars/robots, hence
arbitrary numbers of rendering and capture processes. Most of the
data transmission is from capture processes to rendering processes,
hence data capture is a pre-requisite for rendering processes. At
the visitor’s site (such as the CAVE), which renders the destina-
tion, multiple rendering processes are required due to the multiple
output modes, including visual, aural, and haptic. This is simi-
lar to the destination (i.e. the rendering of the visitor), which also
requires multiple rendering processes to cope with the visual and
aural modes.

Bandwidth Efficiency: There are three different types of data flow
that were identified.

• High-bandwidth & large-size data: These are point-clouds,
depth map, video, audio and haptic streams. These data re-
quire a separate pipeline from the destination capture process
to rendering process using peer to peer protocols.

• Low-bandwidth & small-size data: These are motion and
physiological tracking data requiring dynamic (fast and fre-
quent) updates during sessions. Configuration information
about large-size data are required to be published (slow and
infrequent updates) e.g. current sending rates, available band-
width, number of triangles/points, etc.

• Zero-bandwidth & large-size data: These are data that are reg-
istered at session initiation. For example, a model of a desti-
nation could be pre-computed (static 3D scan) or streamed in
real-time (dynamic capture). The 3D scan may be hosted on
a HTTP URL while the real-time capture is hosted on an IP
address and port. The destination capture process publishes
the URIs for the HTTP and custom protocols used, so that
capture processes would subscribe to that IP/URL to load the
static/dynamic data.

1http://www.xmpp.org/

Sending of high bandwidth data poses a difficult challenge, as it
could slow down a session. Hence we proposed that any capture
process that wants to send high-bandwidth data registers its config-
urations for other clients on the main server and additionally has a
direct pipeline (point to point connections) that does not clog up the
lower-bandwidth data.

Support the Beam-enabling process: A destination needs to be
prepared for capture and reconstruction (Beam-enabling). A main
goal of BEAMING is Beam-enabling a destination within a max-
imum duration of 30 minutes. This requires support for self-
configuration and semi-automatic calibration. Hence, destination
capture processes require data from the scene service to support
Beam-enabling.

Session Management: A Beaming session takes place at the desti-
nation. Session management deals with session initiation, manage-
ment and termination.

• Processes need to be aware of a Beaming session and the
Beam-enabled location (destination).

• Locals should be aware when the visitor representation is ac-
tive.

• Users should be able to initiate and terminate a Beaming ses-
sion.

• Users should be able to record and replay a session.

Quality of Service: The system should enable different granularity
of the Quality of Service (QoS) control. Processes should be able
to set packet priority, reliability and frequency of data serialization.

Scene Graph: It must be able to support a hierarchical data struc-
ture of nodes that is commonly used in games and 3D applications
to represent entities or objects in a scene. The parent-child relation-
ship of all created nodes must be maintained in a graph/tree struc-
ture across all client processes. The concept of implementing scene
graphs across networked virtual environments has been employed
in previous works [Tramberend 1999; Naef et al. 2003; Lake et al.
2010; Hesina et al. 1999].

Presence Awareness: Most clients are assumed to be processes
that are permanently connected to a Beaming session. However, in-
termittent connectivity and mobility characterises handheld mobile
devices. As such, mobile devices were connected to the system us-
ing XMPP presence management. The integration of XMPP also
demonstrates the extensibility of the system.

4 Distribution Architecture

The architecture of the BSS is shown in Figure 2. A client-server
replicated shared object approach is adopted. BSS exchanges data
over the Internet using IP protocols through a centralized server,
rather than a dedicated network. The Beaming Scene Server is re-
sponsible for coordinating the flow of data and world state between
clients. The central server acts as the point of rendezvous and tim-
ing, easy to set up between sites (no peer networks or multicast).
Every process in a Beaming session (clients) receives a copy of
those shared objects when they connect to the server. Every pro-
cess can edit a shared object, changes are transparently copied to
all other processes. Each process can publish information simply
by creating a shared object. All slow or limited volume data is
published on the BSS providing single transport and easy logging
while all time-critical and high volume data use native peer to peer
streams but configuration of those streams is stored on the BSS.
Hence, one single point of contact contains all information about
the scene.



BSS provides a cross-platform C library that can be integrated into
the client process driving the software or hardware system, to facil-
itate communication with the server. A client process is also able to
connect directly with any UDP client to exchange data. New client
processes can be added dynamically at run-time, which makes the
framework very adaptable and flexible. Clients add nodes to the
world via the Beaming Scene Server which ensures that all the other
processes are informed. A logger captures and stores all events be-
ing distributed for later analysis. A Beaming Scene Session would
support one destination and a set of visitors.

Figure 2: Architecture of the Beaming Scene Service

4.1 Data Transfer

Data transmission is managed by RakNet2 middleware, a cross-
platform C++ game network engine that provides UDP transport.
A lower-level framework powers higher level features such as game
object replication. A process can connect to the library and publish
information by creating an object/node which is shared and repli-
cated amongst client processes. Each process will own all of the
objects it creates, and will perform local edits/updates on the prop-
erties. These properties are serialised to keep the databases of all
processes consistent.

UDP transport was chosen to enable more control over the reliabil-
ity of low-bandwidth and small-size data. For example, a resend is
inappropriate for avatar/robot data.

4.2 Data Representation

Data types were created to support the creation of objects/nodes.
These replicated objects include avatars, emotion recognition, fa-
cial expressions, video, 3D objects, point clouds, etc. The data con-
tains representations of the shared mixed-reality as a user space (i.e.
what it looks like) and details of the processes and data streams that
can be used by other processes to render the environment. The idea
is that any client process should be able to connect onto the BSS
and extract information about an entity (e.g. avatar, robot, room or
cameras).

There are two obvious classes of data: (i) tracked human, typically
represented by an avatar or robot; and (ii) reconstructed environ-
ment typically represented by video, audio, point cloud or objects.

2http://www.jenkinssoftware.com/

4.2.1 Tracked Human

These data types typically represent the user being captured. Users’
activities are not only captured at the transporter (as a visitor) but
also at the destination in less detail (as a local). Tracked humans
can include locals if a capture process separates the locals from the
background and tracks the locals (e.g. using the Kinect). Users are
typically represented by an avatar in the recreated virtual environ-
ment in order to send skeleton data, however, higher level data also
need to be captured and streamed separately such as tactile, emo-
tion and facial gestures. Therefore, we created five data types to
represent a tracked human.

Avatar Skeleton: In order to animate an avatar, we use a skele-
ton hierarchy made up of 123 joints (or bones) per avatar. Each
joint has an associated position and orientation (in quaternion an-
gles). An avatar can represent a visitor or a local. The pelvis
joint is relative to world coordinates while the others are relative
to the pelvis/parent joint. The avatar’s 3D positions and orienta-
tions are represented by seven floats per node (three translations
and 4 quaternions) and stored internally as 123 objects arranged
in a scene graph structure. The parent-child relationship is main-
tained, thus allowing processes to poll for data in local or world
co-ordinates. Thus, avatar joints (e.g. head, hand, torso) can be
extracted in world-coordinates. By adopting this as a standard, de-
velopers are able to transform data (Figure 3) from one format (e.g.
Microsoft Kinect R© or Xsens [Roetenberg et al. 2009]) to the avatar
skeleton hierarchy.
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Figure 3: The drawing shows the bone-fixed skeleton frames. The
visitor is looking at the viewer and is performing a T-pose with the
palm facing to the ground. Positions and orientations are given in
relative coordinates, whereas relations are marked by red arrows.

Facial Expression: Facial expressions require different data de-
pending on avatar or robot representation, therefore this data type
needs higher-level abstraction than the joint rotations used for driv-
ing the avatar skeleton. Thus, we created float/boolean attributes,
each corresponding to a particular expression or mouth shape.

Affective State (Emotion): Real time affective state recognition
from EEG (Electroencephalography ), GSR (Galvanic Skin Re-
sponse) & HRV (Heart Rate Variability) requires three double vari-



ables for valence, arousal and a miscellaneous variable for one other
affect state.

Tactile Feedback: The use of a touch device for hand requires vari-
ables to exchange duration of vibration, intensity of vibration and
temperature.

Generic Data: As the needs of different systems might change over
time, these data type allows sending of generic data (e.g. pointer to
a structure in memory), sent as a void pointer with a maximum size
of 1024 Bytes.

4.2.2 Reconstructed Environment

These data types represent reconstructed data from the destination,
typically an indoor area e.g. room. All replicated objects in this
category have a host and port of the streaming points for dynamic
scenes and a http URL for static scenes, in addition to the data types
specified below.

3D Objects: This data type represents dynamic objects in the
scenes such as meshes, point cloud data, etc. The object’s 3D posi-
tion and orientation are specified by the creating process.

Video Source: Although video data is sent through separate net-
work channels, information about the video source is published on
the BSS. This includes camera calibration matrices and dimensions
of the video being streamed.

Audio Source: Although audio data is also sent through separate
network channels, information about the audio server is published
on the BSS.

Point Cloud: Although point cloud data is sent through separate
network channels, information about the source of the point cloud
is published on the BSS. This includes the level of quality of the
point cloud and the number of points/triangles.

4.3 Session Management

1. Joining a session: All client processes are expected to load
the library that allows connection as a client in the client-
server architecture. A function, startclient allows the client
process to establish connection with the server. Processes can
specify a name, type (e.g. VISITOR, LOCAL, SPECTATOR,
ROBOT, HAPTIC DEVICE, etc), configuration file, a flag to
denote whether it is a unidirectional viewer (read access) or
wants to create and update objects (read\write access). Pro-
cesses are also able to change the packet priority, reliability
and serialization frequency.

2. Monitoring a session: A function, check continuously sends
outgoing packets, receives incoming packets and checks for
new connections to the server. This includes regular ping re-
quests by the server to monitor lost connections and attempt-
ing reconnections.

3. Creating shared data: Client processes with write access are
able to create shared objects using any data type, e.g. avatar
data type relating to avatar joints in the XML avatar format.
Processes can add multiple objects and set the properties of
each object.

4. Writing data to a session: Client processes are able to update
each object that it has created.

5. Reading data from a session: Client processes are able to
read data from other remotely connected client processes.

6. Leaving a Session: A client process disconnects by remov-
ing all owned objects and publishing the event to the server.

Other client processes are notified of this disconnection, and
destroy any locally-stored data structures pertaining to the dis-
connected client. Additionally, if a client process does not re-
spond in a timely manner, eventually the server process will
delete the objects that the client created and informs others to
do the same.

4.4 Clients

4.4.1 Client Manager

The Client Manager (Figure 4) is a platform-independent applica-
tion built with C++ and Qt3 that can run as a stand-alone executable,
or as a dynamically linked library. It provides a comprehensive so-
lution for client-side functionality, including connection and initial-
isation to the BSS, synchronous use of multiple tracking devices,
logging and replay of prior sessions. It follows a modular design
and is easy to extend. It encapsulates many aspects of client-side
functionality, including connection management, tracking, logging,
and replay. In spectator mode, it may be used in a basic way, by
connecting to a Beaming Scene Server, and simply observing the
unfolding activity of other clients. However, it may also be used to
achieve all aspects of visitor tracking and data transmission in visi-
tor mode. It supports a number of tracking devices used for capture
of elements of a visitor’s activity during a Beaming session, which
range from motion capture systems to trackers, from eye trackers
to physiological state monitors, etc. It is able to interoperate with
renderers such as an OpenGL interface, eXtreme Virtual Reality
(XVR) software [Tecchia et al. 2010] or the Unity game engine4,
to visualise avatar animations (based on tracking data) and virtual
environments.

Figure 4: Client Manager GUI

4.4.2 XVR

The XVR framework [Tecchia et al. 2010] is a complete de-
velopment environment explicitly designed to support the typi-
cal concepts of VR programming. XVR allows for the develop-
ment and graphical rendering of CAVE-based or HMD applications
[Mortensen et al. 2008; Carrozzino et al. 2008]. It is organized
around a virtual machine and applications are developed using a
dedicated scripting language (S3D), whose constructs and com-
mands are targeted to VR, giving developers the means to deal with
3D animation, positional sound effects, audio and video streaming,
and user interaction. The behaviour of the application is specified
using a custom scripting language, providing the basic features and
exposing VR-related methods available as functions or classes. The

3http://www.qt-project.org/
4http://www.unity3d.com/



XVR framework has a number of built-in features, often sufficient
to develop the most common types of application. Like in any typ-
ical scripting language, basic functions offer simple control over
variables, files, strings, and math manipulation. Beyond these basic
features, the framework offers lots of predefined classes and func-
tions, as well as the ability to introduce user defined data structures
and classes. Extensibility via plug-ins is also available to accom-
modate for more specific and advanced functionalities implemented
via external libraries. It also adopts a shared memory mechanism
in order to pass data between programs e.g. multiple instances of
the client manager.

4.4.3 Web Monitoring

The web monitor was built using PHP and acts as a client which
monitors the state of the system. It displays all connected clients
and accompanying objects on the server using a web browser.

4.4.4 Third Party Client

A visitor, not on the main Beaming network, is able to view the
session through a third party client, Second Life (SL)5, which has
a fairly comprehensive set of meta tools built in e.g. Flash and
HTML5 support (i.e. including video). SL visitors can be repre-
sented in the destination and on the visitors’ displays.

4.4.5 Intelligent Proxy

Intelligent proxy [Hasler et al. 2013] is an automated software agent
on the BSS that can intercept and learn from AVATAR data streams.
As such, it’s able to represent the visitor when she or he is away or
busy with other tasks.

4.4.6 Mobile Clients

The increasing use of mobile devices could potentially enable users
to participate in outdoor Beaming sessions. However, client mo-
bility and intermittent connectivity are inherent issues with mobile
clients. As such, an extension to the BSS (Figure 5) was proposed to
enable mobile clients to set presence information based on XMPP
(Extensible Messaging and Presence Protocol). Presence informa-
tion is a status indicator that conveys ability and willingness of a
user to communicate. XMPP provides us with the ability to set
presence information (such as mood and away states) for a visitor
or local. This system allows communication with mobile clients
(handheld devices) using a portal/bridge. It uses the XMPP pro-
tocol to exchange messages and presence information in close to
real time. Based on XML, it enables the near-real-time exchange
of structured yet extensible data between any two or more network
entities. The XMPP control layer is independent of the middleware
that manages the data types. An XMPP server is used as a provider
of the XMPP authentication, presence and group-chat services. The
control messages are sent via the XMPP server (Openfire6) to the
portal where the data is sent to other client processes on the BSS.

5 Applications

BSS has been used in three main applications: acting rehearsal,
outdoor collaboration and teaching musical instrument. The acting
rehearsal [Steptoe et al. 2012] describes the experience of setting
up a distributed multimodal mixed reality system to support remote
acting rehearsals between two remote actors and a director. We
used a range of capture and display devices to connect the people

5http://www.secondlife.com/
6http://www.igniterealtime.org/projects/openfire/

Beaming 
Scene 
Service

Beaming 
Portal

Mobile Handheld 
Client

Bot 
ManagerVirtual World 

Client

XMPP Client

Rendering 
(Display)

SL Bot SL Bot

XMPP

RakNet (UDP)

HTTP

Virtual World 
(Second Life, SL)

Beaming portal

Figure 5: Architecture of the Beaming Portal (XMPP-Based)

located in three technologically-distinct locations through the BSS.
We describe the teaching and outdoor applications in more detail
below.

5.1 Teaching Application

This application is concerned with teaching a musical instrument,
where the teacher (visitor) visits the destination where the students
(locals) are located. The teacher located in one room is physically
embodied within a robot avatar located in another room to inter-
act directly with the student and the teaching equipment (Figure 6).
The teaching application follows a multimodal teaching scheme in
which the teacher delivers knowledge of a musical instrument and
how to use it. While this application involves one student and one
teacher, it is in principle scalable to multiple teachers and a class-
room.

Barrier

TransporterASite RemoteASite

Headphones
&Microphone

HMD Teacher FormableAObject

ProstheticAHand

Kali-typeA
Robot

RobotAAvatar Student

TrackingA
Suit

Figure 6: Overview on teaching application using robot avatar and
Kali-type robot

The teacher is beamed to the remote site in order to interact with
the student and the teaching equipment. This remote site can be
the student’s house, a teaching facility at a university or something
similar. The scene starts with the teacher knocking on the door of
the room. The student opens the door, greets the teacher with a
handshake and invites him/her to step into the room with the help
of his/her robot avatar. The teacher starts the lesson by giving his-
torical information about the musical instrument, how it has been
used and the physics that generates the sounds. The teacher is able
to play notes on the instrument while being embodied in the robot.
The teacher plays a note and the student repeats it. After a while
the teacher and student are able to play together on the xylophone.

Another mode of operation, the proxy mode is activated if the
teacher has to stop teaching and step out for some time. Within this



mode, a proxy software takes over the control of the robot avatar
and continues the discussion and demonstration. Questions asked
by the student are memorized and provided to the teacher upon re-
turn. The proxy mode can also be important to perform an intro-
duction that is usually static and repetitive in its nature. The proxy
can also demonstrate predefined actions, for example a preselected
melody to be played on the xylophone.

5.1.1 Description of the hardware and software

Figure 7 provides an overview of the data flow as well as intercon-
nected software and hardware components in the realized applica-
tion. The visitor is tracked using a tracking suit and controls the
robot avatar. The visitor interacts with the Kali-type robot to get
haptic feedback when interacting with different kind of objects that
are located at the remote site. A Kinect array is mounted on the
robot avatar to capture an online model of the remote environment.
An offline background model is fused with the online data of mov-
ing persons and objects in order to display visual information to
the visitor. Three dimensional audio from the xylophone as well
as locals is transmitted to the visitor site. The voice of the visi-
tor is played through a loudspeaker mounted on the robot avatar.
The robot avatar has a second operating mode when the visitor is
unreachable. In this case, the proxy takes over and a software pro-
gram is in charge of the operation of the robot avatar.

The tracking suit is essential for the mapping of the visitor’s full-
body motion to robot avatar motions. Full body motion is tracked
via a tracking suit (Xsens) and mapped to the adopted avatar hi-
erarchy. To share this visitor motion data with other processes, it
is written to the BSS. This data is read at the remote site, mapped
from the avatar hierarchy to the robot kinematics and used to control
robot motions. Human finger motions are captured by datagloves
(Cyberglove) and are mapped to the robotic prosthetic hand to allow
grasping of objects. The mapping of the locomotion is enhanced by
model-based prediction as the current usage of a non-holonomic
platform is problematic otherwise.

In order to provide haptic feedback to the visitor we are using the
Kali-type robot concept. This implies that we can estimate the loca-
tion of objects and locals beforehand and that we position the Kali-
type robot at these positions in space to provide haptic feedback.
In order to do so, the Kali-type robot is equipped with a formable
object end-effector [Klare et al. 2013]. This formable object can
simulate different surfaces corresponding to the objects being ma-
nipulated at the remote site. The formable object deforms its shape
to simulate the region around the contact area on the objects being
manipulated. A dummy hand is used to imitate the local while per-
forming a handshake. In the demo we consider interactions with a
door, the hand of a local as well as the xylophone. Currently, we are
using a simplified intention recognition algorithm that activates an
containment area around the object that is closest to the right human
hand. More intelligent algorithms are planned for the future.

For the visual feedback, we fuse a static background of the room
(generated from scans taken from the room beforehand) with live
data captured by the Kinect array mounted on the robot avatar.
These two streams are fused into one stream that is displayed on the
head-mounted display. The hardware setup includes three Kinects
distributed around the robot avatar neck to provide a wide viewing
angle.

The audio feedback is set up as follows: The visitor as well as lo-
cals wear microphones. The visitor uses the headphones that are
installed in the HMD. Audio feedback is rendered given the input
of the tracking data. This tracking data provides the head position
and orientation of the visitor as well as the position of the locals.
This information is continuously updated on the BSS and read by

different audio programs. The loudspeaker is mounted on the robot
to provide audio feedback to the locals.

The proxy, as discussed earlier is able to take control of the robot
avatar when the visitor is not available. It is able to process the
audio stream, to talk and to change the posture of the robot. The
posture of the visitor and locals is available to the proxy program,
and can be accessed from the BSS to adapt the robot avatar’s be-
haviour online.

5.2 Outdoor Application

This application is concerned with exploring user experience in an
outdoor destination (quad). A quad (quadrangle) is an interesting
destination because of the complexity of outdoor tracking in this
area. The added mobility feature of handhelds allowed us to sup-
port a visitor or local in outdoor environments. For example, a vis-
itor could use a smartphone to Beam-in to a session while being
out of the office on a bus or a train. Another example would be
to provide a user with a mobile device that will enable him to par-
ticipate as a local in an outdoor destination. We demonstrate this
by designing an outdoor task, where the local user explores an out-
door destination while collaborating with visitors in three different
transporters.

Local: The outdoor user (local) uses a mobile handheld device to
perform a scavenger hunt task within the quad area. The handheld
device displays a 2D-map (top-down view, Figure 8c) of the quad to
enable visualisation of the visitors’ locations relative to the local’s
position and the relative direction they are facing.

Visitors: The three users are defined by their visitor environments
(transporters) allowing the visitor to visualise the other participants’
location and the direction that they are facing.

1. Visitor uses an immersive environment, CAVE and interacted
with the reconstructed environment (Figure 8a) via a head and
hand tracker with built-in joystick and buttons.

2. Visitor uses a desktop running the SL viewer (Figure 8b) and
interacted via a mouse and keyboard.

3. Visitor uses a mobile hand-held device running a SL app (3D
Lumiya viewer7, as shown in Figure 8d) and interacted via
the touchscreen functionality of the smartphone to control the
camera and walking direction.

The three visitors are not present in the quad but they can see the
locations of the boxes on their respective displays.

Task Objectives: Scavenger hunt is a game where participants seek
to gather a list of items (boxes with QR codes) spread around the
quad. Each task will be composed of 10 addition problems that
the participants would need to solve i.e. 10 boxes. The boxes are
located in the physical quad area, and are represented in the same
exact locations as objects in the visitors’ environments. Each box
would be located in a different location within the quad. To ensure
that participants would have to collaborate to solve the problems,
the addition problem was split into four numbers e.g. 123+7+50+10
was split into 123, 7, 50 and 10. The participants would have to
reach that location in order to activate their part of the problem and
get the location of the next problem.

By gathering qualitative data (through questionnaires) and quanti-
tative performance data on the overall use of the mixed-reality sys-
tem, the application aims to measure the level of copresence from
the perspective of the local i.e. the sense of being in the quad with
the others. Also, as all transporters receive the same data about

7http://www.lumiyaviewer.com/
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Figure 7: Architecture of the Teaching Application

the local and the destination but represent it in different ways, each
visitor would have a different level of presence.

We also aimed to demonstrate how visitors who don’t have access
to immersive technologies (such as CAVE and head mounted dis-
plays) could use a free 3D virtual world client (e.g. SL) or mobile
apps (e.g. 2D-map Client or 3D Lumiya viewer, as shown in Fig-
ures 8c and 8d respectively). The choice of visitor environment
could be dictated by cost and/or space constraints or limited by
availability of equipment at the transporter.

5.2.1 Description of the hardware and software

We implemented an Android app for the local that displayed a 2D
aerial photograph of the destination (quad) while both locals and
visitors were represented as facial icons (Figure 8c) that conveyed
their location and orientation. The local’s position and orientation
are globally located within the quad using GPS, which is converted
into the standard coordinate system and transmitted to the trans-
porters through the portal (Figure 5). This setting enables the local
to walk around the quad while viewing and communicating with the
visitors via the mobile device. As the mobile client only captures
the local’s position and orientation it does not produce a full skele-
ton dataset. Instead it only updates the pelvis joint (ID2, Figure 3),
hence the local’s avatar representation in the visitor’s environments
had limited or no body language.

The visitors see a reconstruction of the quad (Figure 8a) on their
respective displays. Both locals and visitors were represented as
native avatars in the CAVE and SL viewers. The CAVE visitor
sees life-sized avatars of the other avatars whereas the desktop and
mobile visitors sees SL avatars relative to the size of their respective
display. Tracking data is collected from each interaction mode and
sent to the BSS for each visitor.

We integrated the desktop virtual world (SL) and handheld clients

(a) 3D Model (b) Second Life (Desktop)

(c) Mobile (2D Map) (d) Mobile (Second Life)

Figure 8: Interfaces for the outdoor application.

into the BSS using the XMPP architecture. The XMPP architecture
also enabled us to extend the BSS in a variety of ways. Second Life
supports a variety of animation states (such as ‘laughing’, ‘typing’
and ‘away’ states) which provides more information of the con-
trolling user’s presence states. Similarly, smartphones come with
a growing set of embedded sensors [Lane et al. 2010], such as an
accelerometer, digital compass, gyroscope, GPS, microphone, and
camera, which can be indicative of a user’s presence states. These
states can be transmitted by the mobile and SL clients as XMPP
messages to the BSS. More importantly, XMPP was used to handle
intermittent connectivity of handheld mobiles on the BSS e.g. the



smartphone’s sleep mode does not result in disconnections from the
server and instead is set as ‘unavailable’ presence status.

The XMPP architecture also extended the content sharing and col-
laboration capabilities of the BSS. For example. the boxes placed
in the quad are represented as objects on the BSS. The local uses
the smartphone to scan the QR codes. Virtual replicas of the ob-
jects were placed in the visitors’ virtual models. When all session
participants, local and visitor, were within near proximity of the ob-
ject, a shared image would overlay the objects on their respective
screens. This enables users to collaborate in the mixed-reality task
(scavenger hunt).

6 Conclusions and Future Work

In this paper, we have presented the BSS, which attempts to net-
work and process very different systems together with loose cou-
pling between devices. Key features of the BSS include support for
expressive data types, scene graphs, heterogeneity, scalability and
presence awareness. It mixes tuple-spaces for the main processes
with a presence awareness mechanism for less-well connected pro-
cesses. BSS also has the advantage of supporting diverse interaction
and devices and is easy to integrate. Although the BSS doesn’t have
a lot of constraints, it is synchronous and timely whereas XMPP is
near real-time, and asynchronous relative to the BSS. The applica-
tions demonstrate the system’s flexibility of serving a wide range
of devices that differ in their technological capabilities, from low-
fidelity mobile clients and virtual worlds to robots and highly im-
mersive systems. However, BSS has the disadvantage that it does
not currently deal with adherence to common standards, as this re-
quires closer collaboration between partners.

The applications allowed for an early recognition of integration
issues and for an iterative refinement of the system architecture.
There is no dedicated network connection between project partners,
so all traffic flows over standard Internet connectivity, with overall
latency between the nodes on the order of 15 20 milliseconds. The
resulting network infrastructure allows us to stream audio, video
and general data between processes, even if the end points are be-
hind different private networks. Depending on the type of process
connected to the BSS, we can choose to use all or only a subset
of the streams. Hence syncronisation of data between the BSS and
peer to peer streams needed to be catered for. Due to the general low
latency of data transmission and despite the large amount of data
exchanged, users in various locations apparently did not perceive
latency effects during various demonstrations of the applications.
We plan to conduct user studies to explore how users experience
collaborative interactions and explore usability issues.

Furthermore, we are planning an experiment to explore presence
and co-presence with the outdoor application and how presence
awareness of mobile handheld users influences engagement. We
also intend to extend the outdoor application so that locals with
handheld mobiles can take pictures or stream videos on the move,
which are then uploaded to (or streamed from) a http URL or online
database. These details are stored on the BSS. Using the computed
global position and orientation of the local, the picture (or frames)
can be super-imposed on the reconstructed quad model in the visi-
tor’s environments, based on the GPS and gyroscope data from the
local’s smartphone. This concept is demonstrated in [Pece et al.
2013], where videos from a smartphone camera are inserted live
into a panoramic image of a remote place. This will enable visitors
to visualise and explore the destination from the local’s perspective
in real-time. We also intend to extend the collaboration capabili-
ties of the BSS by integrating technologies that will enable users to
annotate on and manipulate both physical and virtual objects at the
destination.

Future implementations will extend the XMPP architecture so users
could retrieve their ID from third party authentication services, such
as their work place, Google or Facebook. The presence awareness
concept could also apply to managing the availability of robots.
We can envision a future where smart home environments include
robot. Presence awareness could play a major part in managing
the availability of these systems. At its simplest, a visitor’s process
would need to know if a robot is currently parked and available for
use. However, this can get more complicated if one visitor needs
to transfer teleoperation control from one robot to another, to tem-
porarily leave a session (e.g. “away” mode) or to pass the control
to another visitor.
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